

User Manual

Rev030124

ADAM-6700 Series

Intelligent I/O Gateway

Copyright

The documentation and the software included with this product are copyrighted 2021 by Advantech Co., Ltd. All rights are reserved. Advantech Co., Ltd. reserves the right to make improvements in the products described in this manual at any time without notice. No part of this manual may be reproduced, copied, translated, or transmitted in any form or by any means without the prior written permission of Advantech Co., Ltd. The information provided in this manual is intended to be accurate and reliable. However, Advantech Co., Ltd. assumes no responsibility for its use, nor for any infringements of the rights of third parties that may result from its use.

Acknowledgements

Intel and Pentium are trademarks of Intel Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft Corp.

All other product names or trademarks are properties of their respective owners.

Product Warranty

Advantech warrants the original purchaser that each of its products will be free from defects in materials and workmanship for two years from the date of purchase.

This warranty does not apply to any products that have been repaired or altered by persons other than repair personnel authorized by Advantech, or products that have been subject to misuse, abuse, accident, or improper installation. Advantech assumes no liability under the terms of this warranty as a consequence of such events.

Because of Advantech's high quality-control standards and rigorous testing, most customers never need to use our repair service. If an Advantech product is defective, it will be repaired or replaced free of charge during the warranty period. For out-of-warranty repairs, customers are billed according to the cost of replacement materials, service time, and freight. Please consult your dealer for more details.

If you believe your product is defective, follow the steps outlined below.

- Collect all the information about the problem encountered (for example, CPU speed, Advantech products used, other hardware and software used). Note anything abnormal and list any onscreen messages displayed when the problem occurs.
- 2. Call your dealer and describe the problem. Please have your manual, product, and any helpful information readily available.
- If your product is diagnosed as defective, obtain a return merchandize authorization (RMA) number from your dealer. This allows us to process your return more quickly.
- 4. Carefully pack the defective product, a completed Repair and Replacement Order Card, and a proof of purchase date (such as a photocopy of your sales receipt) into a shippable container. Products returned without a proof of purchase date are not eligible for warranty service.
- 5. Write the RMA number clearly on the outside of the package and ship the package prepaid to your dealer.

Part No. 2003670000 Printed in Taiwan Edition 2 August 2021

Technical Support and Assistance

- 1. Visit the Advantech website at www.advantech.com/support to obtain the latest product information.
- Contact your distributor, sales representative, or Advantech's customer service center for technical support if you require additional assistance. Please have the following information ready before calling:
 - Product name and serial number
 - Description of your peripheral attachments
 - Description of your software (operating system, version, application software, etc.)
 - A complete description of the problem
 - The exact wording of any error messages

Contents

Chapter	1	Product Overview	.1
	1.1	Introduction	
	1.2	Hardware Introduction	
		Figure 1.1 ADAM-6700 Series (Front View)	
		1.2.1 Power Connection	
		Figure 1.2 ADAM-6700 Series Power Connection	
		1.2.2 USB Connector	
		Figure 1.4 ADAM-6700 Series Micro USB	
		1.2.3 Micro SD Slot	
		Figure 1.5 ADAM-6700 Series Micro SD	
		1.2.4 RS-485 Connector	
		Figure 1.6 ADAM-6700 Series RS-485 Connector	
		1.2.5 Ethernet Connector	6
		Figure 1.7 ADAM-6700 Series Ethernet Connection	
		1.2.6 Reset Button	
		Figure 1.8 ADAM-6700 Series Reset Button	
	1.3	LED Indicator Definition	
	1.4	Dimensions	
		Figure 1.9 ADAM-6700 Series Dimensions	/
Chapter	2	Wiring and Settings	.9
	2.1	ADAM-6717 Intelligent I/O Gateway with Analog Input	10
		2.1.1 Specifications	. 10
		2.1.2 Application Wiring	
		Figure 2.1 Current/Voltage Input Switch Setting	
		Figure 2.2 ADAM-6717 Digital Output and Analog Input Wiring	
		Figure 2.3 ADAM-6717 Digital Output with Inductive Load	
	0.0	Figure 2.4 ADAM-6717 Wet and Dry Contact Wiring	
	2.2	ADAM-6750 Intelligent I/O Gateway with Digital Input/Output	
		2.2.1 Specifications	
		Figure 2.5 ADAM-6750 Digital Input and Digital Output Wiring	
		Figure 2.6 ADAM-6750 Digital Output with Inductive Load	
	2.3	ADAM-6760D Intelligent I/O Gateway with Solid-State Relay Output (for	
		DC)	
		2.3.1 Specifications	
		2.3.2 Application Wiring	
		Figure 2.7 ADAM-6760D Digital Input and Relay Output Wiring	
		Figure 2.8 ADAM-6760D Digital Input and Relay Output Wiring	
		(Side view)	16
Chapter	3	System Configuration	17
		Figure 3.1 Input the LAN Port IP Address Figure 3.2 Web Portal	
		Figure 3.3 Web Utility Searching Devices	
		Figure 3.4 Web Utility Obtaining the Gateway IP Address	
	3.1	Web Utility Configuration	
		Figure 3.5 Web Utility Login Window	
		Figure 3.6 Web Utility Configuration Page	
		3.1.1 Information Settings	

		Figure 3.7 Device Information	20
		Figure 3.8 Network Information	. 21
		Figure 3.9 Module Information	21
		3.1.2 Configuration	
		Figure 3.10Configuration Information	
		Figure 3.11Network Information	
		Figure 3.12Time & Date Configuration	
		Figure 3.13Control Tab Page	
		Figure 3.14General Tab Page	
		Figure 3.15Firmware Tab Page	
		Figure 3.16Account Tab Page	
		Figure 3.17Change the Password	
	3.2	I/O Status Settings	
		3.2.1 Analog Input Settings	
		Figure 3.18Analog Input Status	
		Figure 3.19Analog Input Channel Settings	
		Figure 3.20Analog Input Common Settings	
		3.2.2 Digital Input Settings	
		Figure 3.21ADAM-6717 Digital Input Settings	
		Figure 3.22ADAM-6750 Digital Input Settings	
		Figure 3.23ADAM-6750 Digital Input Information	. 28
		Figure 3.24Counter Mode Configuration	28
		Figure 3.25Low-to-High Delay/High-to-Low Latch Settings	29
		Figure 3.26Frequency Mode Settings	. 29
		Figure 3.27ADAM-6750 Digital Input Status	29
		3.2.3 Digital Output Settings	30
		Figure 3.28ADAM-6717 Digital Output Settings	
		Figure 3.29ADAM-6750 Digital Output Settings	
		Figure 3.30Pulse Output Mode Settings	
		Figure 3.31Low-to-High Delay/High-to-Low Delay Settings	31
		Figure 3.32ADAM-6750 Digital Output Status	. 32
	3.3	Image Updates	32
	3.4	Firmware Updates	33
		Figure 3.33Select Firmware File	. 33
		Figure 3.34Update Firmware	33
	3.5	I/O Configuration Update	34
		Figure 3.35Select I/O Configuration File	
		Figure 3.36Update I/O Configuration	. 34
Chapter	4	Node-RED Program	35
-	4.1	Node-RED Program	
	4.1	Starting the Node-RED Program	
	7.2	Figure 4.1 Web Portal Utility	
		Figure 4.2 Click the Node-RED Link	
		Figure 4.3 Node-RED Login	36
	4.3	Project Creation	
	4.5	Figure 4.4 Node-RED Project Creation	
		Figure 4.5 Sample Flow Template	
Chapter	5	C-Languago APIs	30
Chapter	3	C-Language APIs	JJ
	5.1	APIs for Development	40
Appendix	κA	Modbus Table	41
	A.1	ADAM-6717: 8AI/5DI/4DO Intelligent I/O Gateway	42
	A.1 A.2	ADAM-6750 12DI/12DO Intelligent I/O Gateway	

A.3 ADAM-6760D: 8SSR Relay/8 DI Intelligent I/O Gateway	ADAM-6760D: 8SSR Relay/8 DI Intelligent I/O Gateway			4
---	---	--	--	---

Chapter

Product Overview

1.1 Introduction

The ADAM-6700 series are intelligent compact gateways aimed at edge applications. Equipped with an Arm® Cortex®-A8 32-bit 1 GHz microcontroller unit (MCU) and I/O module, the ADAM-6700 series can serve as edge platforms for data acquisition. Furthermore, the ADAM-6700 series gateways support Node-RED and C-language API programming tools to enable flexible implementation according to application demands.

1. Cloud /database access with data encryption

Every cloud/database has a unique connection mechanism that can cause problems regarding data formatting, encryption, and access. The ADAM-6700 series gateways are capable of transmitting data to the cloud via different nodes. For legacy machines that cannot transmit data to the cloud, the ADAM-6700 series can serve as a data communication gateway to enable IoT applications.

2. Open platform for flexible programming

- Graphical programming environment Node-RED is a programming tool developed by IBM for connecting hardware devices together without complex programming. Node-RED allows users to code programs by simply dragging and dropping nodes. Nodes are programmed using JavaScript. For advanced users, the JavaScript code for nodes can be modified according to the project requirements. For more information, visit https://flows.nodered.org/.
- C-language API commands
 For users wanting to program using a high-level language, C-language APIs are provided for easy programming.

3. Data acquisition

The ADAM-6700 series features an I/O module for collecting data from digital or analog sensors. With the inclusion of an Arm® Cortex®-A8 MCU, large amounts of data can be analyzed locally, reducing latency and potential data losses. For example, if a collected data value is outside the predefined threshold, ADAM-6700 platforms can identify this locally and directly trigger an alarm to turn off the machine, while also sending a notification to management..

4. Edge data analysis

Cloud service and storage costs are directly related to the amount of data uploaded to the cloud. Thus, instead of uploading all raw data to the cloud, ADAM-6700 platforms are capable of processing raw data into insightful information, such as average, maximum, and minimum values, before transmission to the cloud. This not only reduces costs by minimizing the amount of data uploaded, but also facilitates data visualization on digital dashboards.

1.2 Hardware Introduction

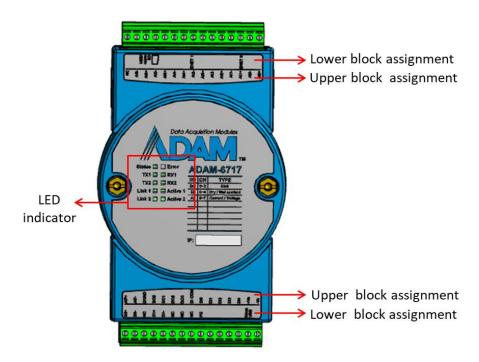


Figure 1.1 ADAM-6700 Series (Front View)

1.2.1 Power Connection

Figure 1.2 ADAM-6700 Series Power Connection

1.2.2 USB Connector

The ADAM-6700 series features a micro USB port that is used as a console port. When connect to the USB port, the device can be powered via USB.

.

Note!

The ADAM-6700 series can be powered by micro USB for configuration. During operation, the device should be powered with $10 \sim 30 V_{DC}$ via the Vs+ and Vs- terminal pins.

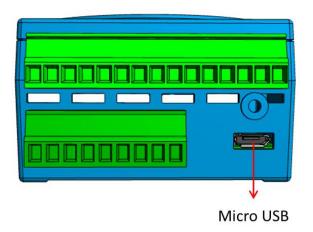


Figure 1.3 ADAM-6700 Series Micro USB

The Type-A USB port is used as a host. Users can connect a USB dongle to the ADAM-6700 device

.

Note!

When the Type-A USB port is in use, power must be provided via the Vs+ and Vs- terminal pins.

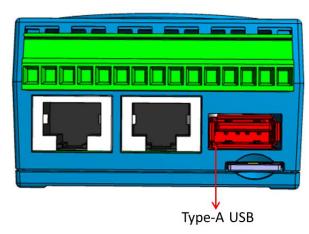


Figure 1.4 ADAM-6700 Series Type-A USB

1.2.3 Micro SD Slot

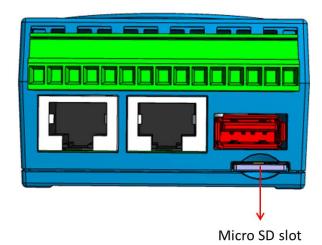


Figure 1.5 ADAM-6700 Series Micro SD

1.2.4 RS-485 Connector

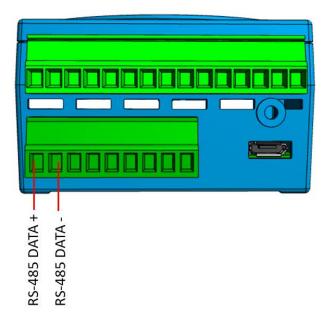


Figure 1.6 ADAM-6700 Series RS-485 Connector

1.2.5 Ethernet Connector

The ADAM-6700 series gateways have two MAC IDs that are listed on a label on the side of the device. The default IP address for these ports is 10.0.0.1 (Eth0) and 11.0.0.1 (Eth1).

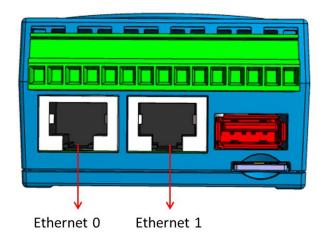


Figure 1.7 ADAM-6700 Series Ethernet Connection

1.2.6 Reset Button

User can push the Reset button to restart OS of ADAM-6700.

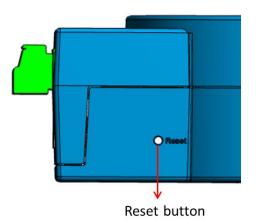


Figure 1.8 ADAM-6700 Series Reset Button

1.3 **LED Indicator Definition**

The ADAM-6700 series gateways are equipped with LED indicators that show the device status. The LED indicator behaviors are defined below. The indicator behavior for error events can be configured using Node-RED.

Color	Behavior	Definition			
	Stay on	Module is booting			
Green	Flash every 1s	Operating system is ready			
	Flash every 0.5s	Conducting image recovery processing			
Red	User defined	User defined			
Yellow	Stay on	RS-485 port (D0) is transmitting data			
Yellow	Stay on	RS-485 port (D1) is transmitting data			
Green	Stay on	RS-485 port (D0) is receiving data			
Green	Stay on	RS-485 port (D1) is receiving data			
Yellow	Stay on	Ethernet(Eth0) speed is 100 Mbps			
Yellow	Stay on	Ethernet(Eth1) speed is 100 Mbps			
Green	Flashing	Ethernet(Eth0) is transmitting/receiving data			
Green	Flashing	Ethernet(Eth1) is transmitting/receiving data			
	Green Red Yellow Yellow Green Green Yellow Yellow Green	Green Stay on Flash every 1s Flash every 0.5s Red User defined Yellow Stay on Yellow Stay on Green Stay on Green Stay on Yellow Stay on Stay on Flashing			

Dimensions 1.4

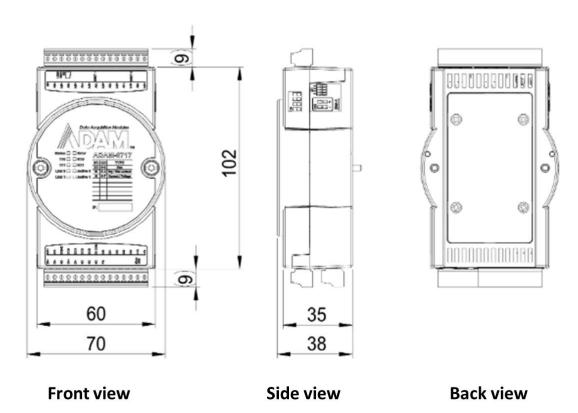


Figure 1.9 ADAM-6700 Series Dimensions

Chapter 2

Wiring and Settings

2.1 ADAM-6717 Intelligent I/O Gateway with Analog Input

2.1.1 Specifications

Analog Input

- **Channels:** 8 (differential and independent configurable)
- Current input range: 0 ~ 20 mA,4 ~ 20 mA, ±20 mA
- Voltage input range: 0 ~ 10V, 0 ~ 150mV, 0 ~ 1V, 0 ~ 5V, 0 ~ 10V, ±5V, ±1V, ±500mV, ±150mV, ±10V, 0 ~ 500mV
- Sampling rate: 10/100 Hz (total)
- Accuracy@25 °C: Voltage 0.1% FSR, current 0.2% FSR
- Zero drift: ±6uV /°CSpan drift: ±25 ppm/°C
- High common mode: 200 V_{DC}
- Resolution: 16 bit

Digital Output

- Channels: 4
- Type: sink 30 VDC, 0.1A max. per channel
- **Delay time:** Low to high: 100 us; High to low: 150 us

Digital Input

- Channels: 5
- **Dry contact:** Logic 0: open; Logic 1: closed to DGND
- Wet contact: Logic 0: 0 ~ 3 V_{DC}; Logic 1: 10 ~ 30 V_{DC}

General

- Power input: 10 ~ 30 V_{DC}
- **Operating temperature:** $-40 \sim 70 \,^{\circ}\text{C} \, (-40 \sim 158 \,^{\circ}\text{F})$
- Storage temperature: -40 ~ 85 °C (-40 ~ 185 °F)
- Operating humidity: 40 °C @85% RH Non-condensing
- Storage humidity: 85 °C @95% RH Non-condensing
- Power consumption: 6W @ 24 V_{DC}
- Real-time clock accuracy: 2 seconds per day
- LAN port: 2 x (2 MAC ID) 10/100 Mbps
- USB port: 1 x micro USB, 1 x USB Type-A
- RS-485 port: 2
- **OS**: RT Linux V3.12
- Memory: NAND flash 512 MB
- **RAM**: DDR3L 512 MB
- Program: Node-RED, Linux C
- External storage: 1 x micro SD slot
- Screw terminal block: Accepts wire size #16-28 AWG, stripped length: 6.5 mm
- Certification: CE, FCC
- Isolation: 2500 V_{DC}

2.1.2 Application Wiring

Analog Input and Digital Output Wiring

The gateway supports the voltage and current input. Before connecting the voltage or current input, ensure that the switch and input range settings of the web utility are set to the correct value.

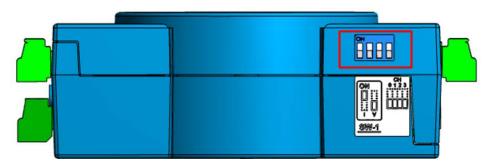


Figure 2.1 Current/Voltage Input Switch Setting

	SW1				SW2			
Al Channel	Ch0	Ch1	Ch2	Ch3	Ch4	Ch5	Ch6	Ch7
ON	Current input mode							
OFF(default)	Voltage input mode							

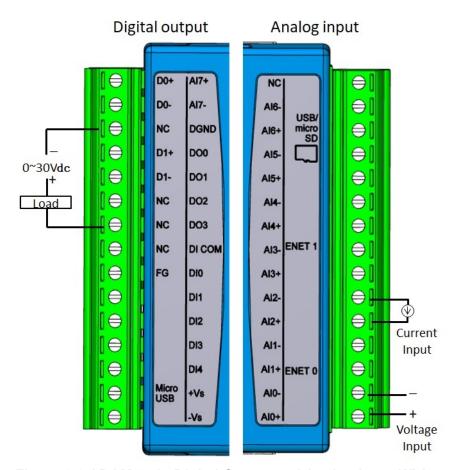


Figure 2.2 ADAM-6717 Digital Output and Analog Input Wiring

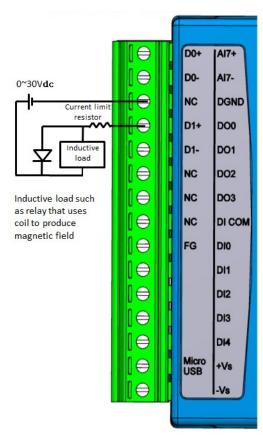


Figure 2.3 ADAM-6717 Digital Output with Inductive Load

Digital Input Wet/Dry Contact Wiring

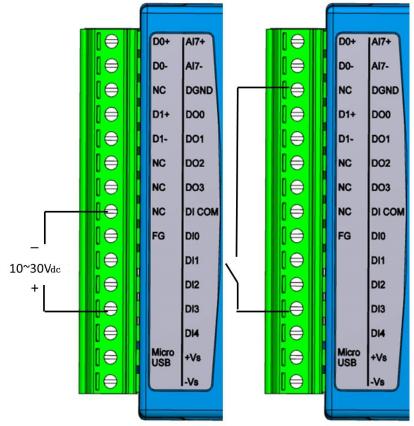


Figure 2.4 ADAM-6717 Wet and Dry Contact Wiring

2.2 ADAM-6750 Intelligent I/O Gateway with Digital Input/Output

2.2.1 Specifications

Digital Output

Channel: 12

■ **Type:** Sink 30 V_{DC}, 0.1A max. per channel

■ **Delay time:** Low to high: 100 us; High to low: 150 us

■ Pulse output: Up to 3 kHz

Digital Input

■ Channel: 12

Dry contact: Logic 0: open; Logic 1: closed to DGND
 Wet contact: Logic 0: 0 ~ 3 V_{DC}, Logic 1: 10 ~ 30 V_{DC}

■ Counter/frequency: Up to 3 kHz

General

■ Power input: 10 ~ 30 V_{DC}

Operating temperature: -40 ~ 70 °C (-40 ~ 158 °F)
 Storage temperature: -40 ~ 85 °C (-40 ~ 185 °F)

Operating humidity: 40 °C @85% RH non-condensing
 Storage humidity: 85 °C @95% RH non-condensing

■ Power consumption: 6W @ 24 V_{DC}

■ Real-time clock accuracy: 2 seconds per day

■ LAN port: 2 x (2 MAC ID) 10/100 Mbps
■ USB port: 1 x micro USB, 1 x USB Type-A

RS-485 port: 2OS: RT Linux V3.12

■ Memory: NAND flash 512 MB

■ RAM: DDR3L 512 MB

Program: Node-RED, Linux CExternal storage: 1 x micro SD slot

■ Screw terminal block: Accepts wire size #16-28 AWG, stripped length: 6.5 mm

Certification: CE, FCCIsolation: 2500 V_{DC}

2.2.2 Application Wiring

Digital Input and Digital Output Wiring

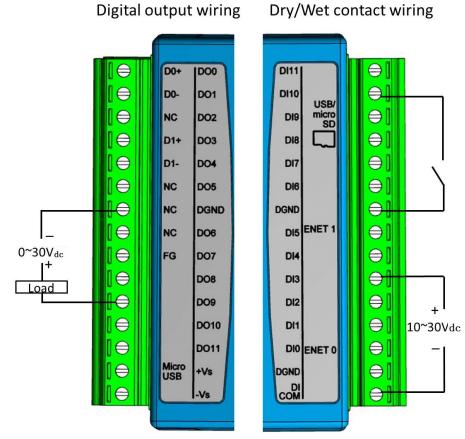


Figure 2.5 ADAM-6750 Digital Input and Digital Output Wiring

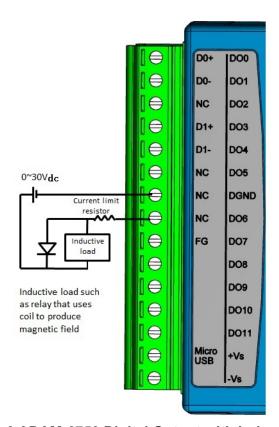


Figure 2.6 ADAM-6750 Digital Output with Inductive Load

2.3 ADAM-6760D Intelligent I/O Gateway with Solid-State Relay Output (for DC)

2.3.1 Specifications

Relay Output (PhotoMOS SPST)

- Channels: 8 (Form A)
- Contact rating (Resistive and Inductive load): 30 V_{DC}
 - 1 A @25°C
 - 0.7A @70°C
- Relay-on time: 1.3 ms
- Relay-off time: 0.8 ms
- Isolation (Relay output to power): 1500Vrms
- Peak Load Current: 4A (100ms (1 pulse))
- Total Power Dissipation: 400mW/channel
- On-state resistance: 0.5Ω

Digital Input

- Channel: 8
- Dry contact:
 - Logic 0: open
 - Logic 1: closed to DGND
- Wet contact:
 - Logic 0: 0 ~ 3 V_{DC}
 - Logic 1: 10 ~ 30 V_{DC}
- Isolation (Digital Input to power): 2500 V_{DC}

General

- Power input: 10 ~ 30 V_{DC}
- Operating temperature: -40 ~ 70 °C (-40 ~ 158 °F)
- Storage temperature: -40 ~ 85 °C (-40 ~ 185 °F)
- Operating humidity: 40 °C @85% RH non-condensing
- Storage humidity: 85 °C @95% RH non-condensing
- Power consumption: 6.5 W @ 24 VDC
- Real-time clock accuracy: 2 seconds per day
- LAN port: 2 x (2 MAC ID) 10/100 Mbps
- USB port: 1 x micro USB, 1 x USB Type-A
- RS-485 port: 2
- **OS:** RT Linux V3.12
- Memory: NAND flash 512 MB
- **RAM**: DDR3L 512 MB
- External storage: 1 x micro SD slot
- Program: Node-RED, Linux C
- Screw terminal block: Accepts wire size #16-28 AWG, stripped length: 6.5 mm
- Certification: CE, FCC
- Isolation (RS-485 to power): 2500 V_{DC}

2.3.2 Application Wiring

Digital Input and Digital Output Wiring

Digital Input Wiring Relay Output Wiring Wiring in upper terminal blocks D0+ RL 7+ 0~30 V_{dc} D0-RL 7-RL 6-**Dry Contact** NC DGND RL 6+ DIO D1-DI 1 RL 5+ NC DI 2 RL 4-. DI 3 • Wet Contact RL 3- ENET 1 DI COM • DI 4 RL 3+ ٠ 10~30 Vdc DI 5 RL 2-RL 2+ • RL 1-DI 7 RL 1+ ENET 0 NC . +Vs RL 0-

Figure 2.7 ADAM-6760D Digital Input and Relay Output Wiring

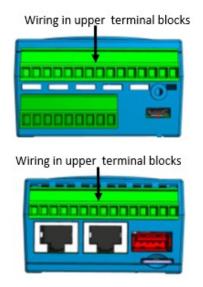


Figure 2.8 ADAM-6760D Digital Input and Relay Output Wiring (Side view)

Chapter

System Configuration

System Configuration

Advantech has developed a web portal for configuring the ADAM-6700 series gateways. To access the web portal, users must obtain the IP address of the assigned LAN port. Then open a browser and type the IP address of the LAN port. The default IP setup mode is "DHCP".

- 1. If the IP mode is set as "DHCP" and the gateway is connected to the DHCP server, type the IP address of the assigned LAN port.
- 2. If the IP mode is set as "DHCP", but the gateway is not connected to the DHCP server, the LAN port will be automatically set to (Eth0)10.0.0.1 and (Eth1) 11.0.0.1
- 3. If the IP mode is set as "static IP", input the assigned static IP address.

Figure 3.1 Input the LAN Port IP Address

After inputting the LAN port IP address, the web portal interface should be displayed. Click "Link" to navigate to the web utility configuration page or Node-RED program.

Figure 3.2 Web Portal

Obtain the Gateway IP

To obtain the gateway IP address, connect the LAN port of the ADAM-6700 device to your computer. Then use the ADAM/Apax.NET Utility, version 2.05.11 B19 or later, to obtain the IP address (static or DHCP mode).

1. Enter the ADAM/Apax.NET Utility. Right-click the **Ethernet** icon and click **Search Device**.

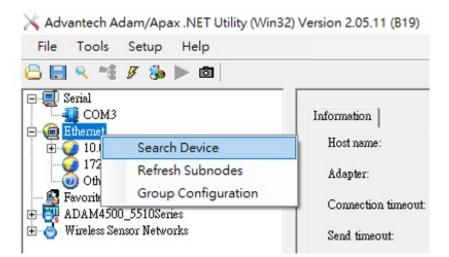


Figure 3.3 Web Utility Searching Devices

2. The ADAM/Apax.NET Utility will list the connected ADAM-6700 gateways and their IP address.

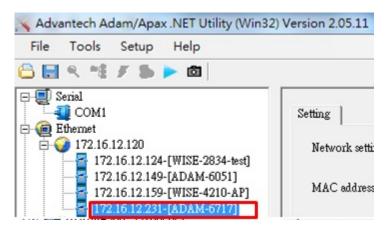


Figure 3.4 Web Utility Obtaining the Gateway IP Address

3.1 Web Utility Configuration

On the Configuration page of the web utility, click "Link". In the popup window displayed, enter the username and password and click "Sign In".

Default username: root
Default password: 00000000

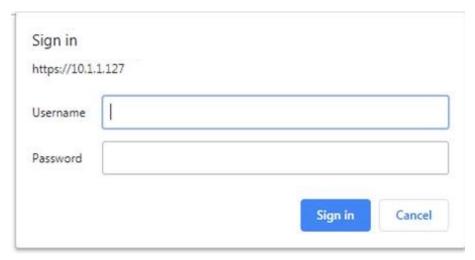


Figure 3.5 Web Utility Login Window

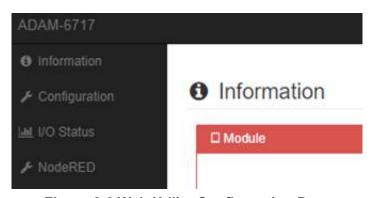


Figure 3.6 Web Utility Configuration Page

3.1.1 Information Settings

The device information, such as the model name and user-defined device name, can be found in the Information tab.

Device Information

Figure 3.7 Device Information

Model Name: Shows the model name.

Customized Name: Shows the user-defined device name. The name can be modified in the configuration tab.

Network Information

Figure 3.8 Network Information

Interface: Shows the device LAN port.

Mac: Shows the Mac ID of the LAN port.

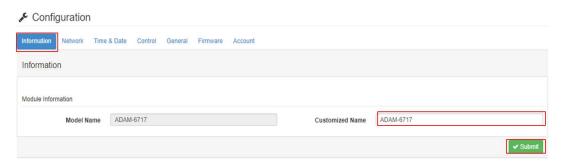
Gateway: Shows the gateway IP address.

Subnet: Shows the subnet address.

IP Mode: This item allows users to set the IP Mode as "Static" or "DHCP".\

Module Information

Figure 3.9 Module Information


Module Name: Shows the module name.

Module description: Shows the module description.

Firmware Description: Shows the firmware version and system information.

3.1.2 Configuration

Information

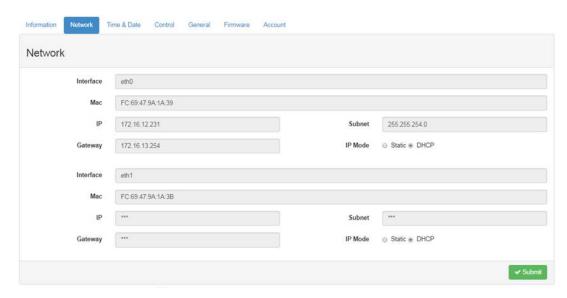


Figure 3.10 Configuration Information

Customized Name: Define the name in the column and click "submit" to implement the change.

Submit: Click for the changes to take effect.

Network

Figure 3.11 Network Information

Interface: Shows the network LAN port. **Mac:** Shows the Mac ID of the LAN port.

IP: Shows the IP address.

Gateway: Shows the gateway address. **Subnet:** Shows the subnet address.

IP Mode: This item allows users to set the IP Mode as "Static" or "DHCP".

■ Time & Date

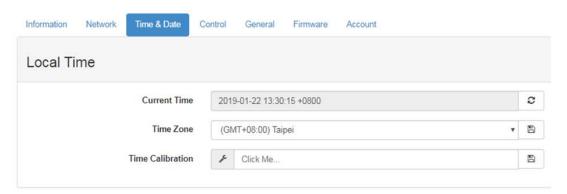


Figure 3.12 Time & Date Configuration

Current Time: Shows the current time. **Time Zone:** Shows the time zone.

Time Calibration: This item allows users to adjust the time and date.

Control

Figure 3.13 Control Tab Page

System Restart: This item allows users to reboot the system.

General

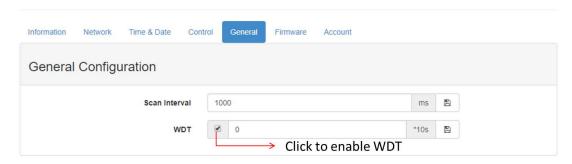


Figure 3.14 General Tab Page

Scan interval: This item allows users to set the time interval for refreshing I/O data **WDT:** The system watchdog conducts system checks at regular intervals to ensure normal operation. If the watchdog detects that the system is not running, the device will be automatically rebooted. Click to enable the watchdog (a tick will appear when successfully enabled). Next, set the watchdog timer intervals as multiples of 10 seconds.

Firmware

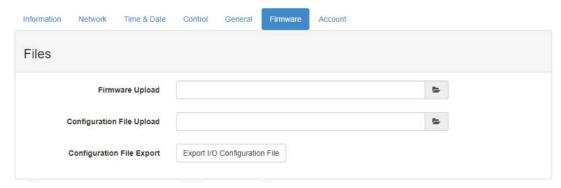


Figure 3.15 Firmware Tab Page

Firmware Upload: Follow the onscreen instructions to update the firmware. **Configuration File Upload:** Use this item to import the I/O configuration settings. **Configuration File Export:** Use this item to export the I/O configuration settings.

Account

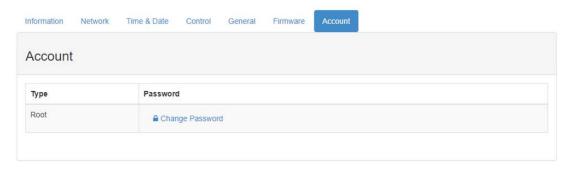


Figure 3.16 Account Tab Page

The default password is "00000000". To change the password, click "Change Password". The system will display a popup window.

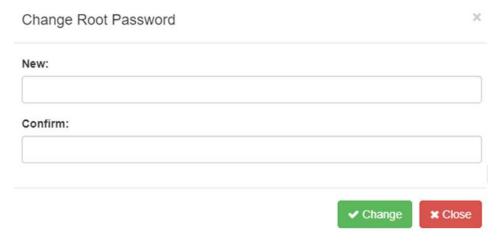


Figure 3.17 Change the Password

Input a new password and click "change". Wait 30 seconds before logging in again using the new password (the Node-RED program will reboot when the password is changed).

3.2 I/O Status Settings

3.2.1 Analog Input Settings

Status

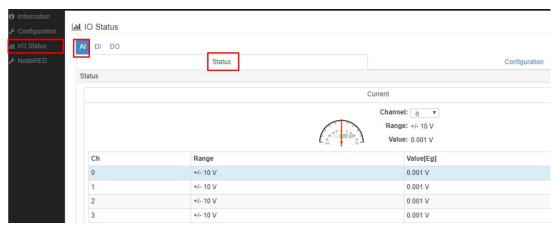


Figure 3.18 Analog Input Status

The Status tab shows the analog input settings, including the input range and values.

Note!

Ensure that the current and voltage input range settings are consistent with the switch settings.

Channel Settings

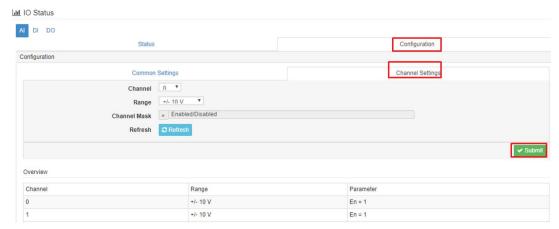


Figure 3.19 Analog Input Channel Settings

Channel: Use this item to select the channel for configuration. The "All" option can be used to configure all channels simultaneously.

Range: Use this item to set the analog input range.

Channel Mask: Use this item to enable/disable channel masking (a tick will appear when successfully enabled).

Refresh: Use this item to refresh the channel information.

Submit: Click to make the changes take effect.

Parameter: When the channel is enabled En = 1 and when the channel is disabled En = 0.

Common Settings

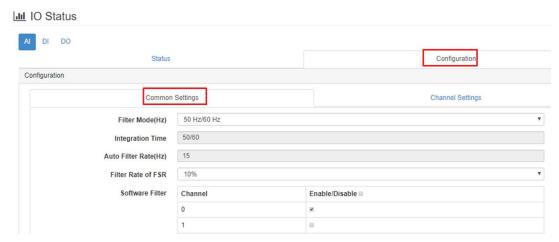


Figure 3.20 Analog Input Common Settings

Filter Mode: Use this item to change the sampling rate. The default mode is 50/60 Hz. Low-speed mode is 10 Hz (total). High speed mode is 100 Hz (total). User-defined mode is not available.

Filter Rate of FSR: Use this item to set the noise filter function. If the value is more than the percentage of the input range, the value will be considered noise + filter.

Software Filter: Use this item to enable/disable the noise filter function.

3.2.2 Digital Input Settings

ADAM-6717

Figure 3.21 ADAM-6717 Digital Input Settings

Status: Shows the status of the digital inputs; green = on, grey = off.

ADAM-6750/6760D DI Mode Configuration

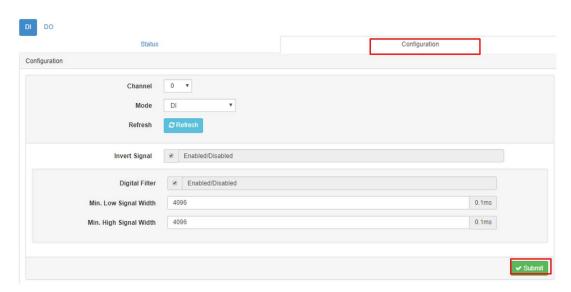


Figure 3.22 ADAM-6750 Digital Input Settings

Channel: Select the channel for configuration

Mode: Use this item to set the digital input mode as "DI", "counter", "low-to-high latch", "high-to-low latch", or "frequency".

Refresh: Use this item to refresh the current settings.

Invert Signal: Use this item to enable/disable inversion of DI signals (a tick will appear when enabled).

Digital Filter: Use this item to enable/disable the digital filter (a tick will appear when enabled).

Min. Low Signal Width: Use this item to set the low signal width of the filter as multiples of 0.1 ms.

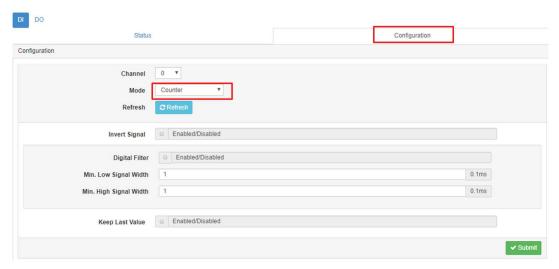

Min. High Signal Width: Use this item to set the high signal width of the filter as multiples of 0.1ms.

Figure 3.23 ADAM-6750 Digital Input Information

Parameter: Shows the channel settings: 1 = enable, 0 = disable, Inv = invert signal, Fltr = filter, FtHi = high signal width, FtLo = low signal width, CntKp = keep last value.

Counter Mode Configuration

Figure 3.24 Counter Mode Configuration

Channel: Select the channel for configuration.

Invert Signal: Use this item to enable/disable inversion of DI signals (a tick will appear when enabled).

Digital Filter: Use this item to enable/disable the digital filter (a tick will appear when enabled).

Min. Low Signal Width: Use this item to set the low signal width of the filter as multiples of 0.1 ms.

Min. High Signal Width: Use this item to set the high signal width of the filter as multiples of 0.1 ms.

Keep Last Value: Use this item to enable/disable the keep last value function (a tick will appear when enabled).

Submit: Click to make the changes take effect.

Low-to-High Delay/High-to-Low Latch Configuration

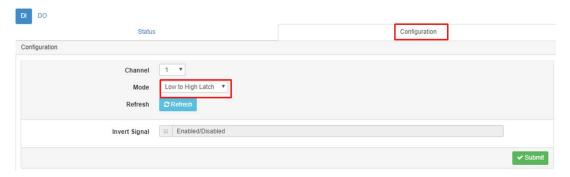


Figure 3.25 Low-to-High Delay/High-to-Low Latch Settings

Invert Signal: Use this item to enable/disable inversion of DI signals (a tick will appear when enabled).

Frequency Mode Configuration

Figure 3.26 Frequency Mode Settings

Invert Signal: Use this item to enable/disable inversion of DI signals (a tick will appear when enabled).

Status

Figure 3.27 ADAM-6750 Digital Input Status

Mode: Use this item to view and change the channel mode.

3.2.3 Digital Output Settings

ADAM-6717



Figure 3.28 ADAM-6717 Digital Output Settings

Status: Shows the status of the digital outputs; green = on, grey = off

ADAM-6750/6760D DO Mode Configuration

Figure 3.29 ADAM-6750 Digital Output Settings

Channel: Use this item to select the channel for configuration.

Submit: Click to make the changes take effect.

Pulse Output Mode Configuration

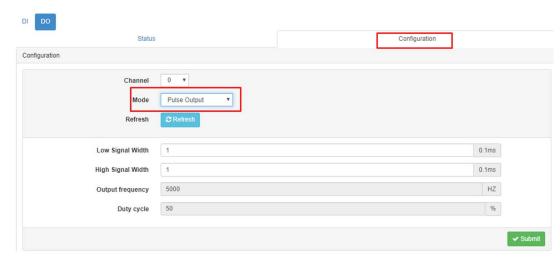


Figure 3.30 Pulse Output Mode Settings

Channel: Use this item to select the channel for configuration.

Low Pulse Width: Use this item to set the low pulse width of the filter as multiples of 0.1 ms.

High Pulse Width: Use this item to set the high pulse width of the filter as multiples of 0.1 ms.

Output Frequency: Use this item to set the pulse output frequency:

ADAM-6750: up to 3 kHz

Duty Cycle: Use this item to set the duty cycle. **Submit:** Click to make the changes take effect.

Low-to-High Delay/High-to-Low Delay Configuration

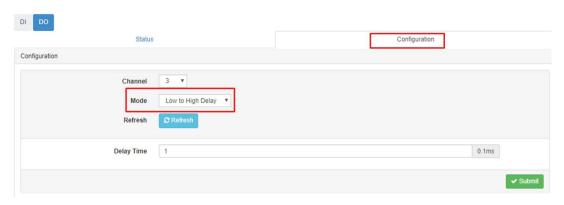


Figure 3.31 Low-to-High Delay/High-to-Low Delay Settings

Channel: Use this item to select the channel for configuration.

Delay Time: Use this item to set the delay time as multiples of 0.1 ms.

Submit: Click to make the changes take effect.

Status

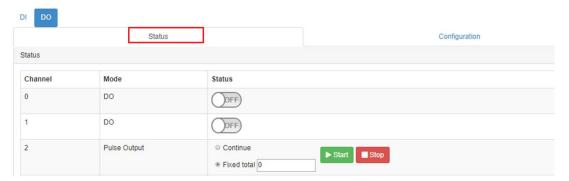


Figure 3.32 ADAM-6750 Digital Output Status

Status: Shows the status of the digital outputs; green = on, grey = off. **Pulse Output:** Fixed total => Click "start" to output a specific number of pulses.

Continue => Click "start" to continue to output pulses until the user clicks "stop".

3.3 Image Updates

The device image contains the operating system files and should be updated to support new functions. The latest image can be downloaded from www.advantech.com. Follow the steps outlined below to update the image.

- 1. Ensure that the device is turned off. Copy the image file onto a micro SD card and insert the card into the ADAM-6700 micro SD slot.
- 2. Turn on the device. The Status LED will flash every 0.5 seconds until the image update is complete. At this point, the status LED will flash every 1 second.
- 3. Turn off the device and remove the micro SD card. The device is now installed with the new image and ready for use.

Note!

After the image update process is complete, a new update.log file will be created on the micro SD card and the advupdate.txt file will be deleted. This is to prevent the system from updating the image again if the micro SD card is left in the slot. To update the image again, first delete the image file on the micro SD card. Then follow the standard steps to update the image, as outlined in Section 3.2.

3.4 Firmware Updates

The device firmware can be updated using the web utility.

 In the Firmware tab, click the Firmware Upload icon and select the firmware file xxxx.bin

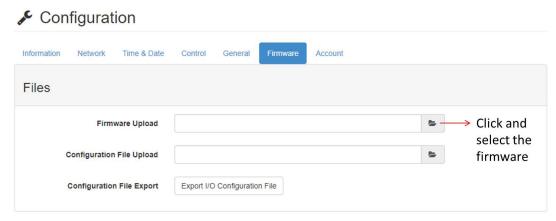


Figure 3.33 Select Firmware File

2. Click the Update icon to start the update, or click the Cancel icon to cancel the process.

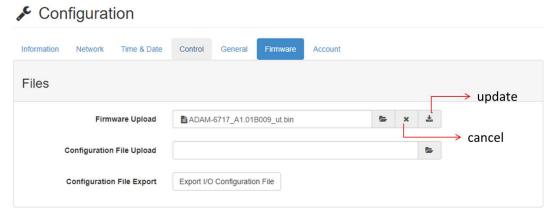


Figure 3.34 Update Firmware

3. Reboot the device to implement the firmware update.

3.5 I/O Configuration Update

To save time when configuring the I/O, the I/O configuration settings can be exported and imported to the device.

1. In the Firmware tab, click the Configuration Upload icon and select the configuration file xxxx.cfg

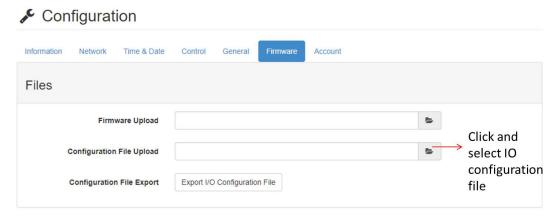


Figure 3.35 Select I/O Configuration File

2. Click the Update icon to start the update, or click the Cancel icon to cancel the process.

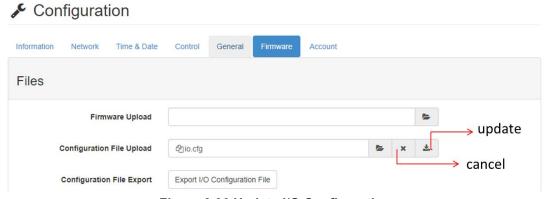


Figure 3.36 Update I/O Configuration

Chapter

4

Node-RED Program

4.1 Node-RED Program

The ADAM-6700 series devices are built in Node-RED, which is a graphical programming environment that allows users to code programs by simply dragging and dropping nodes. User can quickly and easily code programs without needing to know complex high-level programming languages.

Moreover, diverse node resources are available online to suit any application. For more information, visit https://flows.nodered.org/.

Note!

To achieve the optimum performance of the Node-RED program, close the web utility when using Node-RED.

4.2 Starting the Node-RED Program

Connect the ADAM-6700 series device to your computer. Open a web browser and in the search bar enter the IP address of the LAN port. The web portal interface should be displayed. Click "Link" to navigate to the Node-RED program.

Figure 4.1 Web Portal Utility

Figure 4.2 Click the Node-RED Link

Enter the username and password to login (the username and password will be the same as that for the web portal).

Default username: root
Default password: 00000000

Figure 4.3 Node-RED Login

4.3 Project Creation

After logging into the Node-RED program on the ADAM-6700 series device, users can begin creating projects and coding programs. To connect hardware devices together simply drag nodes from the left-side palette and drop them into the edit area. The node information is shown in the sidebar on the right of the interface. Define the data and flow process by using wires to connect the endpoint of each node. When the flow is finished, click "Deploy" to execute the flow.

Note!

- 1. When downloading or updating nodes, confirm whether the nodes support Node.js v6.3.1. If the nodes are not compatible with Node.js v6.3.1, Node-RED may crash when the nodes are in operation.
- 2. If Node-RED crashes due to downloading or updating nodes that are not compatible with Node.js v6.3.1, users will need to clean the flow. Refer to the FAQs on Advantech's website for instructions on how to clean the flow.

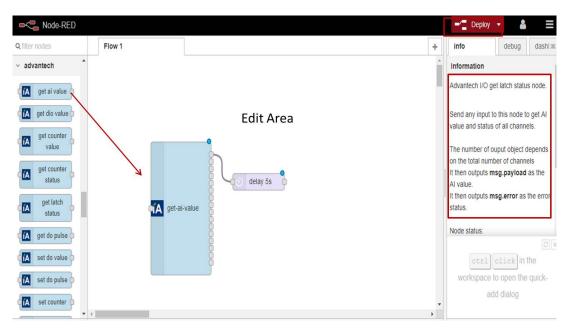


Figure 4.4 Node-RED Project Creation

Users can import sample flows from the library to reduce development time.

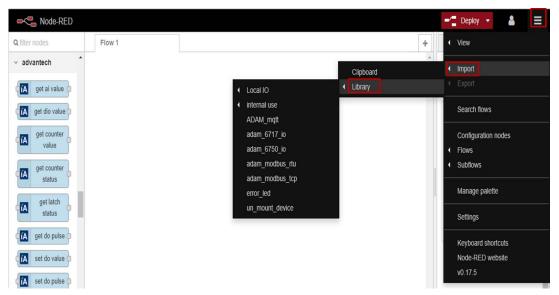


Figure 4.5 Sample Flow Template

Chapter

C-Language APIs

5.1 APIs for Development

The ADAM-6700 series gateways offer C-language APIs for easy programming and development. Relevant instructions and software documentation are provided on the Advantech support website at https://support.advantech.com/support.

To find the API instructions, simply visit the above link and in the support portal search bar, input the specific ADAM-6700 model (e.g., ADAM-6717, ADAM-6750).

Appendix A

Modbus Table

A.1 ADAM-6717: 8AI/5DI/4DO Intelligent I/O Gateway

Address (0X):			
Address 0X	Channel	Description	Attribute
00001	0		
00002	1		
00003	2	DI Value	Read
00004	3		
00005	4		
00017	0		
00018	1	—— DO Value	R/W
00019	2		17/ / /
00020	3		
00121	0		
00122	1		
00123	2		
00124	3	——Open-Circuit Flag (Burnout)	Read
00125	4	——	
00126	5		
00127	6		
00128	7	- 	
Address (4X):			
Address 4X	Ch	Description	Attribute
40031~40032	0		
40033~40034	1		
40035~40036	2		
40037~40038	3		
40039~40040	4	Al Floating Value (IEEE754)	Read
40041~40042	5		
40043~40044	6		
40045~40046	7		
40047~40048	reserve		
40201	0		
40202	1		
40203	2		
40204	3		D/*/
40205	4	Type Code	R/W
40206	5		
40207	6		
40207			
40207	7		

40211		Module Name 1	Read	Dood
40212		Module Name 2	Reau	
40221	All	Al Channel Enable	R/W	

A.2 ADAM-6750 12DI/12DO Intelligent I/O Gateway

Address (0X):				
Address (0x)	Channel	Description	Attribute	
0x0001	0			
0x0002	1			
0x0003	2			
0x0004	3			
0x0005	4			
0x0006	5	—— DI Value	Dood	
0x0007	6	— Di value	Read	
0x0008	7			
0x0009	8			
0x0010	9			
0x0011	10			
0x0012	11			
0x0017	0			
0x0018	1			
0x0019	2			
0x0020	3			
0x0021	4			
0x0022	5		D // //	
0x0023	6	——DO Value	R/W	
0x0024	7			
0x0025	8			
0x0026	9			
0x0027	10			
0x0028	11	 -	_	
0x0033		Counter start (1)/stop (0)	R/W	
0x0034		Clear Counter (1)	Write	
0x0035	 0	reserve	R/W	
0x0036		DI latch status	R/W	
0x0037		Counter start (1)/stop (0)	R/W	
0x0038		Clear Counter (1)	Write	
0x0039	<u> </u>	reserve	R/W	
0x0040		DI latch status	R/W	

0x0041		Counter start (1)/stop (0)	R/W
0x0042	_	Clear Counter (1)	Write
0x0043	-2	reserve	R/W
0x0044	_	DI latch status	R/W
0x0045		Counter start (1)/stop (0)	R/W
0x0046	_	Clear Counter (1)	Write
0x0047	-3	reserve	R/W
0x0048	_	DI latch status	R/W
0x0049		Counter start (1)/stop (0)	R/W
0x0050	_	Clear Counter (1)	Write
0x0051	-4	reserve	R/W
0x0052	_	DI latch status	R/W
0x0053		Counter start (1)/stop (0)	R/W
0x0054	_	Clear Counter (1)	Write
0x0055	-5	reserve	R/W
0x0056	_	DI latch status	R/W
0x0057		Counter start (1)/stop (0)	R/W
0x0058	_	Clear Counter (1)	Write
0x0059	-6	reserve	R/W
0x0060	_	DI latch status	R/W
0x0061		Counter start (1)/stop (0)	R/W
0x0062	_ 	Clear Counter (1)	Write
0x0063	-7	reserve	R/W
0x0064	<u> </u>	DI latch status	R/W
0x0065		Counter start (1)/stop (0)	R/W
0x0066	_	Clear Counter (1)	Write
0x0067	-8	reserve	R/W
0x0068	<u> </u>	DI latch status4	R/W
0x0069		Counter start (1)/stop (0)	R/W
0x0070	_	Clear Counter (1)	Write
0x0071	- 9	reserve	R/W
0x0072	_	DI latch status	R/W
0x0073		Counter start (1)/stop (0)	R/W
0x0074		Clear Counter (1)	Write
0x0075	– 10	reserve	R/W
0x0076	<u> </u>	DI latch status	R/W
0x0077		Counter start (1)/stop (0)	R/W
0x0078		Clear Counter (1)	Write
0x0079	– 11	reserve	R/W
0x0080	<u> </u>	DI latch status	R/W

Address (4X):			
Address (4x)	Channel	Description	Attribute
4x0001 4x0002	0		
4x0003 4x0004	1		
4x0005 4x0006	2		
4x0007 4x0008	3		
4x0009 4x0010	4		
4x0011 4x0012	5	Counter/Frequency Value	Read
4x0013 4x0014	6	——Counter/Frequency Value	Read
4x0015 4x0016	7		
4x0017 4x0018	8		
4x0019 4x0020	9		
4x0021 4x0022	10		
4x0023 4x0024	11		
4x0025 4x0026	0		
4x0027 4x0028	1		
4x0029 4x0030	2	<u> </u>	
4x0031 4x0032	3		
4x0033 4x0034	4	<u> </u>	
4x0035 4x0036	5	Dula a sukaski asu lasal saidk	
4x0037 4x0038	6	Pulse output Low-level width	Read
4x0039 4x0040	7		
4x0041 4x0042	8		
4x0043 4x0044	9		
4x0045 4x0046	10		
4x0047 4x0048	11		

4x0049 4x0050	0		
4x0051 4x0052	1		
4x0053 4x0054	2		
4x0055 4x0056	3		
4x0057 4x0058	4		
4x0059 4x0060	5	Pulso output High lovel wi	dth Dood
4x0061 4x0062	6	Pulse output High-level width	ulli Reau
4x0063 4x0064	7		
4x0065 4x0066	8		
4x0067 4x0068	9		
4x0069 4x0070	10		
4x0071 4x0072	11		
4x0211	All	Module name 1	Dood
4x0212	All	Module name 2	——Read
4x0301	All	DI Value	Read
4x0303	All	DO Value	R/W

A.3 ADAM-6760D: 8SSR Relay/8 DI Intelligent I/O Gateway

Address (0X):			
Address (0x)	Channel	Description	Attribute
0x0001	0		
0x0002	1		
0x0003	2		
0x0004	3	DIVelue	Darad
0x0005	4	—— DI Value	Read
0x0006	5		
0x0007	6		
0x0008	7		
0x0017	0		
0x0018	1		
0x0019	2		
0x0020	3	CCD Value	
0x0021	4	—— SSR Value	R/W
0x0022	5	<u> </u>	
0x0023	6		
0x0024	7		
0x0033		Counter start (1)/stop (0)	R/W
0x0034	<u> </u>	Clear Counter (1)	Write
0x0035	<u> </u>	reserve	R/W
0x0036		DI latch status	R/W
0x0037		Counter start (1)/stop (0)	R/W
0x0038	<u>—</u> — 1	Clear Counter (1)	Write
0x0039	 1	reserve	R/W
0x0040		DI latch status	R/W
0x0041		Counter start (1)/stop (0)	R/W
0x0042		Clear Counter (1)	Write
0x0043	 2	reserve	R/W
0x0044		DI latch status	R/W
0x0045		Counter start (1)/stop (0)	R/W
0x0046		Clear Counter (1)	Write
0x0047	 3	reserve	R/W
0x0048		DI latch status	R/W
0x0049		Counter start (1)/stop (0)	R/W
0x0050		Clear Counter (1)	Write
0x0051	—4	reserve	R/W
0x0052		DI latch status	R/W

0x0053	- -5	Counter start (1)/stop (0)	R/W
0x0054		Clear Counter (1)	Write
0x0055	-3	reserve	R/W
0x0056		DI latch status	R/W
0x0057		Counter start (1)/stop (0)	R/W
0x0058	- -6	Clear Counter (1)	Write
0x0059	-0	reserve	R/W
0x0060	_	DI latch status	R/W
0x0061		Counter start (1)/stop (0)	R/W
0x0062	- -	Clear Counter (1)	Write
0x0063	- ₁	reserve	R/W
0x0064	_	DI latch status	R/W

Address (4X):

Audiess (+A).			
Address (4x)	channel	Description	Attribute
4x0001 4x0002	0		
4x0003 4x0004	1		Read
4x0005 4x0006	2		
4x0007 4x0008	3		
4x0009 4x0010	4	—— Counter/Frequency Value	
4x0011 4x0012	5		
4x0013 4x0014	6		
4x0015 4x0016	7		
4x0025 4x0026	0		Read
4x0027 4x0028	1		
4x0029 4x0030	2		
4x0031 4x0032	3	—— Pulse output Low level width	
4x0033 4x0034	4	——Pulse output Low-level width	
4x0035 4x0036	5		
4x0037 4x0038	6	<u></u>	
4x0039 4x0040	7		

4x0049 4x0050	0	Pulse output High-level width	
4x0051 4x0052	1		
4x0053 4x0054	2		Read
4x0055 4x0056	3		
4x0057 4x0058	4		
4x0059 4x0060	5		
4x0061 4x0062	6		
4x0063 4x0064	7		
4x0211	All	Module name 1	
4x0212	All	Module name 2	- Read
4x0301	All	DI Value	Read
4x0303	All	DO Value	R/W

www.advantech.com

Please verify specifications before quoting. This guide is intended for reference purposes only.

All product specifications are subject to change without notice.

No part of this publication may be reproduced in any form or by any means, such as electronically, by photocopying, recording, or otherwise, without prior written permission from the publisher.

All brand and product names are trademarks or registered trademarks of their respective companies.

© Advantech Co., Ltd. 2021