

Neousys Technology Inc.

Nuvis-5306RT

User Manual

Rev. 1.0

Table of Contents

Table of Contents	2
Legal Information	7
Contact Information	8
Declaration of Conformity	8
Copyright Notice	9
Safety Precautions	10
Hot Surface Warning	10
Battery Warning	10
Service and Maintenance	11
ESD Precautions	11
Restricted Access Location	
About This Manual	12

1 Introduction

1.1	Nuvis-5306RT Overview	
1.2	Nuvis-5306RT-DTIO Specifications	14
1.3	Nuvis-5306RT-MCU Specifications	
1.4	Isolated DIO Specifications	
1.5	Supported CPUs	
1.6	Dimension	
1.6.1	Superior View	
1.6.2	Front Panel View	
1.6.3	Side View	
1.6.4	Bottom View	
1.7	Dimensions with Mount Bracket	
1.7.1	Front View	
1.7.2	Bottom View	

2 System Overview

2.1	Nuvis-5306RT Packing List	26
2.2	Nuvis-5306RT Front Panel	27
2.2.1	DisplayPort	28
2.2.2	DVI Port	29
2.2.3	VGA Port	30
2.2.4	USB3.0 Port	
2.2.5	Ethernet Port / PoE	32
2.2.6	On/ Off Ctrl & Status Output	33
2.2.7	System Status LED	34
2.2.8	Power Button	34
2.2.9	Reset Button	35
2.2.10	Cassette Enclosure	35
2.3	Nuvis-5306RT Rear Panel	36
2.3.1	SIM Card Slot	37
2.3.2	MCU Reset	
2.3.3	Real-time Vision I/O	
2.3.4	3.5mm Speaker-out/ Microphone-in Jack	38
2.3.5	COM Ports	39
2.3.6	USB2.0 Ports	
2.3.7	3-Pin Terminal Block for DC and Ignition Input	41
2.4	Internal I/O Components	
2.4.1	DDR4 SO-DIMM Slots	
2.4.2	Dual Mode mSATA/ mini-PCIe Socket	43
2.4.3	mini-PCIe Socket	
2.4.4	SATA Ports	47
2.4.5	Internal USB Port	48

3 System Installation

3.1	Disassembling the System Enclosure	50
3.2	CPU Installation Procedure	
3.3	Memory Module Installation	55
3.4	Internal 2.5" SATA HDD/ SSD Installation	57
3.5	mini-PCIe Module Installation	60
3.6	PCIe Card Installation in Cassette Module	63
3.7	Installing the System Enclosure	66
3.8	DC Power Connection	68
3.9	Wall Mount/ Anti-Vibration Bracket Installation	69
3.9.1	Wall Mount Bracket Installation	69
0.0.1		
3.10	Powering On the System	71
	Powering On the System	71
3.10		71 71

4 System Configuration

4.1	BIOS Settings	
4.1.1	COM1 & COM3 Operating Mode	
4.1.2	SATA Configuration	
4.1.3	TPM Availability	
4.1.4	CPU SKU Power Configuration	
4.1.5	Wake on LAN Option	
4.1.6	Power On after Power Failure Option	
4.1.7	Boot Type (Legacy/ UEFI)	
4.1.8	Boot Option for Newly Added Device	
4.1.9	Watchdog Timer for Booting	
4.1.10	Selecting Legacy/ UEFI Boot Device	
4.2	AMT Configuration	
4.3	RAID Volume Configuration	

5 OS Support and Driver Installation

5.1	Operating System Compatibility	91
5.2	Install Drivers Automatically	92
5.3	Install Drivers Manually	93
5.3.1	For Windows 7 (x86)	93
5.3.2	For Windows 7 (x64)	93
5.3.3	For Windows 8 (x86)	93
5.3.4	For Windows 8 (x64)	94
5.3.5	For Windows 10 (x32)	
5.3.6	For Windows 10 (x64)	94
5.4	Install WDT_DIO Driver Package	95
5.4.1	For Windows 7 (x86)	95
5.4.2	For Windows 7/8/10 (x64)	95
5.4.3	For Windows 7/ 8/ 10 (WOW64)	95

Appendix A: Windows 7 Installation

xHCI Driver Support in Microsoft OS	96
User Provided Items For Windows Installation	96
Creating Windows 7 Installation USB Flash Drive	97
Step 1 – Create .ISO File From Windows 7 DVD	97
Step 2 – Create USB Flash Drive Installer From .ISO	
Step 3 – Create Folder and Copy Files For Patching Process	
Step 4 – Execute .bat File to Patch .wim Files	
Step 5 – Install Windows 7 Using USB Flash Drive Installer	

Appendix B: Using WDT & DIO

WDT and DIO Library Installation	
WDT Function Reference	
InitWDT	
SetWDT	107
StartWDT	
ResetWDT	
StopWDT	
Using DIO Function	
Wiring for DIO	
DIO Pin Definition	110
DIO Function Reference	111
InitDIO	111
DIReadLine	111
DIReadPort	111
DOWriteLine	112
DOWritePort	112
DOWriteLineChecked	113
DOWritePortChecked	113
COS Function Reference	114
SetupDICOS	114
RegisterCallbackDICOS	115
StartDICOS	
StopDICOS	116
DI COS Example	116

Appendix C: PoE On/ Off Control

GetStatusPoEPort	119
EnablePoEPort	120
DisablePoEPort	121

Appendix D: DTIOv2 Programming Guide

Programming Under Windows Environment	123
Step 1. WDT_DIO Library Installation	
Step 2. Install Integrated Development Environment (IDE)	125
Step 3: Startup Visual Studio	
Step 4: Execute 5306RTDemo.cpp file	
Step 5: Build Solution	
Step 6: Execute Local Windows Debugger	
Step 7: Pre-configured Solution	
Nuvis-5306RT Vision-Specific I/O: TB-10 Pin Assignment	129
Vision-Specific I/O Function Description	130

Programming with DTIOv2 Library

LED Brightness	132
Adjust the Brightness of LED	
LED Function Reference	
LED_SetCurrentDriving	
LED Example Turn On and Off LED	

Quadrature Encoder Interface (QEI)

The Concept of QEI	
QEI Function Reference	
QEI_Setup	
QEI_Start	
QEI_Stop	
QEI_GetDirection	
QEI_GetPosition	
QEI_SetPosition	140

QEI Example 1 Read Direction and Position	141
---	-----

Deterministic Trigger I/O version 2 (DTIOv2)

The Concept of DTIOv21	143
Trigger target1	143
Trigger source1	143
Channel1	143
Four types of output signals1	144
Trigger Mode 1	146
Time Unit1	
Delta1	
Time Unit and Delta1	148
Total Time Unit (TTU)1	
Active Low1	
Trigger Target as Trigger Source1	149
Software Trigger1	
DTIOv2 Function Reference1	
DT2_Setup1	
DT2_Start1	
DT2_Stop1	
DT2_SetUnit1	
DT2_GetUnit	
DT2_StPush1	
DT2_StPull	

DTIOv2 Programming Tips

DTIOv2 Example 1 - Infinite Pulse Train	162
DTIOv2 Example 2 - Use DI to Trigger LED	164
DTIOv2 Example 3 Software Trigger	
DTIOv2 Example 4 - The Trigger Target as the Trigger Source	

Appendix E: Advanced DTIOv2

The Concept of Advanced DTIOv2	172
Trigger Buffer	172
Trigger Buffer can be Applied to 8 Channels Simultaneously	
External Input	
Advanced DTIOv2 Function Reference	
DT2_EiRegisterIndexed	175
DT2_EiSendResult	
Advanced DTIOv2 Example 1 - Trigger Buffer	
Advanced DTIOv2 Example 2 - External Input	

Pulse Width Modulator (PWM)

The Concept of Pulse Width Modulator (PWM)	184
Configuring the Isolated Digital Output as PWM Output	
PWM Function Reference	
PWM_GenSetup	
PWM_GenPeriod	
PWM_PulseWidth	
PWM_PulseInvert	
PWM_Start	
PWM_Stop	
PWM Example	

Advanced Examples

Combination	PWM and DTIOv21	92
••••••••••••••		~-

Legal Information

All Neousys Technology Inc. products shall be subject to the latest Standard Warranty Policy

Neousys Technology Inc. may modify, update or upgrade the software, firmware or any accompanying user documentation without any prior notice. Neousys Technology Inc. will provide access to these new software, firmware or documentation releases from download sections of our website or through our service partners.

Before installing any software, applications or components provided by a third party, customer should ensure that they are compatible and interoperable with Neousys Technology Inc. product by checking in advance with Neousys Technology Inc.. Customer is solely responsible for ensuring the compatibility and interoperability of the third party's products. Customer is further solely responsible for ensuring its systems, software, and data are adequately backed up as a precaution against possible failures, alternation, or loss.

For questions in regards to hardware/ software compatibility, customers should contact Neousys Technology Inc. sales representative or technical support.

To the extent permitted by applicable laws, Neousys Technology Inc. shall NOT be responsible for any interoperability or compatibility issues that may arise when (1) products, software, or options not certified and supported; (2) configurations not certified and supported are used; (3) parts intended for one system is installed in another system of different make or model.

Contact Information

Headquarters (Taipei, Taiwan)	Neousys Technology Inc. 15F, No.868-3, Zhongzheng Rd., Zhonghe Dist., New Taipei City, 23586, Taiwan Tel: +886-2-2223-6182 Fax: +886-2-2223-6183 <u>Email</u> , <u>Website</u>
Americas (Illinois, USA)	Neousys Technology America Inc. 3384 Commercial Avenue, Northbrook, IL 60062, USA Tel: +1-847-656-3298 <u>Email, Website</u>
China	Neousys Technology (China) Ltd. Room 431, Building 32, Guiping Road 680, Shanghai 200233, China Tel: +86-2161155366 <u>Email, Website</u>

Declaration of Conformity

FCC

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense.

CE

The product(s) described in this manual complies with all applicable European Union (CE) directives if it has a CE marking. For computer systems to remain CE compliant, only CE-compliant parts may be used. Maintaining CE compliance also requires proper cable and cabling techniques.

Copyright Notice

All rights reserved. This publication may not be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written consent of Neousys Technology, Inc.

Disclaimer This manual is intended to be used as an informative guide only and is subject to change without prior notice. It does not represent commitment from Neousys Technology Inc. Neousys Technology Inc. shall not be liable for any direct, indirect, special, incidental, or consequential damages arising from the use of the product or documentation, nor for any infringement on third party rights.

Patents and Trademarks	Neousys, the Neousys logo, Expansion Cassette, MezIO [™] are registered patents and trademarks of Neousys Technology, Inc.
	Windows is a registered trademark of Microsoft Corporation.
	Intel [®] , Core™ is a registered trademark of Intel Corporation
	NVIDIA [®] , GeForce [®] is a registered trademark of NVIDIA Corporation
	Texas Instruments (TI) and Sitara are registered trademarks of Texas Instruments Incorporated.
	All other names, brands, products or services are trademarks or registered

trademarks of their respective owners.

Safety Precautions

Read these instructions carefully before you install, operate, or transport the system.

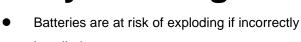
- Install the system or DIN rail associated with, at a sturdy location
- Install the power socket outlet near the system where it is easily accessible
- Secure each system module(s) using its retaining screws
- Place power cords and other connection cables away from foot traffic. Do not place items over power cords and make sure they do not rest against data cables
- Shutdown, disconnect all cables from the system and ground yourself before touching internal modules
- Ensure that the correct power range is being used before powering the device
- Should a module fail, arrange for a replacement as soon as possible to minimize down-time
- By means of a power cord connected to a socket-outlet with earthing connection
- This product is intended to be supplied by a Listed Power Adapter or DC power source, rated 24Vdc, 16A, Tma 60 degree C and 5000m altitude during operation.
 If further assistance is required, please contact Neousys Technology
- If the system is not going to be used for a long time, disconnect it from mains (power socket) to avoid transient over-voltage

Hot Surface Warning

pas toucher."

WARNING!

Components/ parts inside the equipment may be hot to touch! Please wait one-half hour after switching off before handling parts.


Battery Warning

battery

HOT SURFACE. DO NOT

TOUCH. "ATTENTION: Surface chaude. Ne

- InstalledDo not attempt to recharge, force open, or heat the
- Replace the battery only with the same or equivalent type recommended by the manufacturer

Service and Maintenance

- ONLY qualified personnel should service the system
- Shutdown the system, disconnect the power cord and all other connections before servicing the system
- When replacing/ installing additional components (expansion card, memory module, etc.), insert them as gently as possible while assuring connectors are properly engaged

ESD Precautions

- Handle add-on module, motherboard by their retention screws or the module's frame/ heat sink. Avoid touching the PCB circuit board or add-on module connector pins
- Use a grounded wrist strap and an anti-static work pad to discharge static electricity when installing or maintaining the system
- Avoid dust, debris, carpets, plastic, vinyl and styrofoam in your work area.
- Do not remove any module or component from its anti-static bag before installation

Restricted Access Location

The controller is intended for installation only in certain environments where both of the following conditions apply:

- Access can only be gained by QUALIFIED SERVICE PERSONNEL who have been instructed on the reasons for restrictions applied to the location and any precautions that shall be taken
- Access is through the use of a TOOL, lock and key, or other means of security, and is controlled by the authority responsible for the location

About This Manual

This manual introduces Neousys Technology Nuvis-5306RT, a fully featured machine vision controller that supports 6th generation Intel Core i7/ i5 processors with vision specific I/O, real-time control and GPU-computing.

Revision History

Version	Date	Description
1.0	Jul. 2020	Initial release

1 Introduction

Neousys' Nuvis-5306RT is a fully featured machine vision controller that supports 6th Gen Intel® Core[™] i7/ i5 processors with vision specific I/Os, real-time control and GPU-computing.

1.1 Nuvis-5306RT Overview

Nuvis-5306RT features Intel® 6th Gen Core[™] i7/i5 processor paired with Intel® Q170 Platform Controller Hub. It is the world's first fully featured machine vision controller in a compact footprint that integrates exceptional computing power, built-in camera interfaces and real-time vision-specific I/O controls.

Nuvis-5306RT provides a powerful machine vision platform with integrated LED lighting controller, camera trigger, encoder input, pulse width modulation (PWM) output and digital I/O, to simultaneously connect and control all vision devices. With Neousys' patented technologies, Deterministic Trigger I/O (DTIO) and NuMCU (based on MCU-based architecture), they manage all vision-specific I/Os and allow users to program a deterministic timing correlation between input and output signals in microsecond scale. In

addition, the innovative NuMCU technology grants users full control of MCU by integrating programming environment, run-time download/debug capability, to achieve comprehensive I/O control.

Nuvis-5306RT features rich I/Os that include four IEEE 802.3at PoE, four USB 3.0, four USB 2.0, one VGA, two DisplayPorts, three serial COM, one mic-in and one speaker-out port. In addition, Nuvis-5306RT can also accommodate an NVIDIA® GeForce® GTX 950/ 1050 to leverage CPU-accelerated vision library or deep-learning vision applications. Combining built-in PoE+, USB 3.0 interfaces and the expandability for Camera Link and CoaXPress, Nuvis-5306RT is the ideal platform for demanding machine vision controller applications.

1.2 Nuvis-5306RT-DTIO Specifications

System Platfo	rm
	Supports 6 th -Gen Intel® Core™ LGA1151 CPU
Processor	● I ntel® Core™ i7-6700 (8M Cache,3.4/4.0 GHz, 65W TDP)
	● Intel® Core™ i5-6500 (6M Cache, 3.2/3.6 GHz, 65W TDP)
	● Intel® Core™ i7-6700TE (8M Cache, 2.4/3.4 GHz, 35W TDP)
	● Intel® Core™ i5-6500TE (6M Cache, 2.3/3.3 GHz, 35W TDP)
Chipset	Intel® Q170 Platform
Graphics	Integrated Intel® HD Graphics 530
Memory	2x 260-pin SO-DIMM sockets, up to 32 GB DDR4 2133 MHz SDRAM
Vision Specifi	c I/O Interface
LED Lighting	4-CH LED lighting controller output, supporting
Controller	 Constant current mode (up to 2A per channel, 100 kHz dimming control)
Controller	 Constant voltage mode (24 VDC, 100 kHz dimming control)
Camera Trigger	4-CH camera trigger output (12 VDC output)
Encoder Input	1-CH quadrature encoder input (A/B/Z)
Isolated	4-CH isolated high-speed digital output (<2 us transient time, for strobe/PWM)
Digital Output	4-CH isolated high-current digital output (up to 500 mA rated current)
Isolated	8-CH isolated high-speed digital input
Digital Input	(<2 us transient time)
Real-time I/O	Patented MCU-based real-time I/O control with DTIO V2
Control	
I/O Interface	
	1x Ethernet port by Intel® I219
Ethernet	5x Ethernet ports by Intel® I210
PoE+	4x IEEE 802.3at (80W total) Gigabit PoE+ (port 3 ~6)
	1x VGA supporting maximum 1920 x 1200 resolution
Video Port	1x DVI-D supporting maximum 1920 x 1200 resolution
	2x DisplayPort outputs, supporting maximum 4096 x 2304 resolution
	4x USB 3.0 ports (1000MB/s total bandwidth) via native xHCI controller
USB	4x USB 2.0 ports
Serial Port	2x software-programmable RS-232/422/485 (COM1 & COM3)
	1x RS-232 port (COM2)
Audio	1x mic-in and 1x speaker-out

Storage Interface			
SATA HDD	2x internal SATA port for 2.5" HDD/SSD (support RAID 0/ 1)		
mSATA	1x full-size mSATA (mux with mini-PCIe)		
Expansion Bu	s		
PCI/ PCI Express	 1x PCIe x16 slot @ Gen3, 8-lanes PCIe signals in Cassette, supporting 75W NVIDIA® GPU COTS CameraLink and CoaXPress camera interface card 		
Mini PCI-E	1x internal mini PCI Express socket with front-accessible SIM socket 1x internal mini PCI Express socket with internal SIM socket (mux with mSATA)		
Power Supply	y & Ignition Control		
DC Input	1x 3-pin pluggable terminal block for 8~35VDC DC input		
Remote Ctrl. & Status Output	1x 10-pin (2x5) wafer connector for remote on/off control and status LED output		
Max. Power Consumption	With Core™ i7-6700TE: 49.2W (2.05A@24V)* With Core™ i5-6500TE: 47.8W (1.99A@24V)* With Core™ i3-6100TE: 39.4W (1.64A@24V)*		
Mechanical			
Dimension	240 mm (W) x 225 mm (D) x 111 mm (H)		
Weight	4.5 kg (including CPU, GPU, memory and HDD)		
Mounting	Wall mount bracket (standard) DIN-rail mounting (optional)		
Environmenta	Environmental		
Operating Temperature	Using i7-6700TE or i5-6500TE, configured @ 35W TDP -25°C ~ 60°C ** Using i7-6700 or i5-6500, configured @ 65W/ 51W TDP -25°C ~ 60°C */** (configured as 35W CPU mode) -25°C ~ 50°C */** (configured as 65W CPU mode)		
Storage Temperature	-40°C ~85°C		
-	-40°C ~85°C 10%~90% , non-condensing		
Temperature			
Temperature Humidity	10%~90% , non-condensing		

* For i7-6700 running at 65W mode, the high operating temperature shall be limited to 50°C and thermal throttling may occur when sustained full-loading applied. Users can

configure CPU power in BIOS to obtain higher operating temperature.

** For sub-zero operating temperature, a wide temperature HDD drive or Solid State Disk (SSD) is required.

🖗 ΝΟΤΕ

When running CPUs with greater than 35W TDP, the maximum operating temperature shall be limited to 50°C and thermal throttling may occur when sustained full-load is applied. Users can configure CPU power in BIOS to obtain higher operating temperature.

1.3 Nuvis-5306RT-MCU Specifications

System Platform		
	Supports 6 th -Gen Intel® Core™ LGA1151 CPU	
	● I ntel® Core™ i7-6700 (8M Cache,3.4/4.0 GHz, 65W TDP)	
Processor	● Intel® Core™ i5-6500 (6M Cache, 3.2/3.6 GHz, 65W TDP)	
	● Intel® Core™ i7-6700TE (8M Cache, 2.4/3.4 GHz, 35W TDP)	
	● Intel® Core™ i5-6500TE (6M Cache, 2.3/3.3 GHz, 35W TDP)	
Chipset	Intel® Q170 Platform	
Graphics	Integrated Intel® HD Graphics 530	
Memory	2x 260-pin SO-DIMM sockets, up to 32 GB DDR4 2133 MHz SDRAM	
Vision Specifi	c I/O Interface	
	4-CH LED lighting controller output, supporting	
LED Lighting	 Constant current mode (up to 2A per channel, 100 kHz dimming control) 	
Controller	 Constant voltage mode (24 VDC, 100 kHz dimming control) 	
Camera		
Trigger	4-CH camera trigger output (12 VDC output)	
Encoder Input	1-CH quadrature encoder input (A/B/Z)	
Isolated	4-CH isolated high-speed digital output (<2 us transient time, for strobe/PWM)	
Digital Output	4-CH isolated high-current digital output (up to 500 mA rated current)	
Isolated Digital	8-CH isolated high-speed digital input	
Input	(<2 us transient time)	
Real-time I/O	NuMCU firmware	
Control		
I/O Interface		
Ethernet	1x Ethernet port by Intel® I219	
Luemer	5x Ethernet ports by Intel® I210	
PoE+	4x IEEE 802.3at (80W total) Gigabit PoE+ (port 3 ~6)	
	1x VGA supporting maximum 1920 x 1200 resolution	
Video Port	1x DVI-D supporting maximum 1920 x 1200 resolution	
	2x DisplayPort outputs, supporting maximum 4096 x 2304 resolution	
	4x USB 3.0 ports (1000MB/s total bandwidth) via native xHCI controller	
USB	4x USB 2.0 ports	
Serial Port	2x software-programmable RS-232/422/485 (COM1 & COM3)	
	1x RS-232 port (COM2)	
Audio	1x mic-in and 1x speaker-out	

Storage Interf	ace			
SATA HDD	2x internal SATA port for 2.5" HDD/SSD (support RAID 0/ 1)			
mSATA	1x full-size mSATA (mux with mini-PCIe)			
Expansion Bu	JS			
PCI/ PCI Express	 1x PCIe x16 slot @ Gen3, 8-lanes PCIe signals in Cassette, supporting 75W NVIDIA® GeForce® GPU COTS CameraLink and CoaXPress camera interface card 			
Mini PCI-E	 COTS CameraLink and CoaXPress camera interface card 1x internal mini PCI Express socket with front-accessible SIM socket 1x internal mini PCI Express socket with internal SIM socket (mux with mSATA) 			
Power Supply	/ & Ignition Control			
DC Input	1x 3-pin pluggable terminal block for 8~35VDC DC input			
Remote Ctrl. & Status Output	1x 10-pin (2x5) wafer connector for remote on/off control and status LED output			
Max. Power Consumption	With Core™ i7-6700TE: 49.2W (2.05A@24V)* With Core™ i5-6500TE: 47.8W (1.99A@24V)* With Core™ i3-6100TE: 39.4W (1.64A@24V)*			
Mechanical				
Dimension	240 mm (W) x 225 mm (D) x 111 mm (H)			
Weight	4.5 kg (including CPU, GPU, memory and HDD)			
Mounting	Wall mount bracket (standard) DIN-rail mounting (optional)			
Environmenta	al			
Operating Temperature	Using i7-6700TE or i5-6500TE, configured @ 35W TDP -25°C ~ 60°C ** Using i7-6700 or i5-6500, configured @ 65W/ 51W TDP -25°C ~ 60°C */** (configured as 35W CPU mode) -25°C ~ 50°C */** (configured as 65W CPU mode)			
Storage Temperature	-40°C ~85°C			
Humidity	10%~90% , non-condensing			
Vibration Shock	Operating, 5 Grms, 5-500 Hz, 3 Axes (w/ SSD, according to IEC60068-2-64) Operating, 50 Grms, Half-sine 11 ms Duration (w/ SSD, according to IEC60068-2-27)			
EMC * For i7-6700	CE/FCC Class A, according to EN 55032 & EN 55024 running at 65W mode, the high operating temperature shall be limited to			

For i7-6700 running at 65W mode, the high operating temperature shall be limited to 50°C and thermal throttling may occur when sustained full-loading applied. Users can configure CPU power in BIOS to obtain higher operating temperature.

** For sub-zero operating temperature, a wide temperature HDD drive or Solid State Disk

(SSD) is required.

When running CPUs with greater than 35W TDP, the maximum operating temperature shall be limited to 50°C and thermal throttling may occur when sustained full-load is applied. Users can configure CPU power in BIOS to obtain higher operating temperature.

1.4 Isolated DIO Specifications

Isolated Digital Input	
No. of Channel	8-CH Isolated Digital Input Channels
	Logic High: 5 to 24V
Logic Level	Logic Low: 0 to 1.5V
Isolated Voltage	3750 Vrms
Transient time	< 2 µs
Operation Mode	DTIOv2 NuMCU
Isolated Digital Output	
CH0~3 Isolated Digital Output Ch	annels
Operation Voltage	24V
Sink Current (per channel)	500 mA
Isolated Voltage	3750 Vrms
Operation Mode	DTIOv2 NuMCU
CH4~7 Isolated Digital Output Ch	nannels
Sink Current (per channel)	350 mA
Transient time	< 2 µs
Isolated Voltage	3750 Vrms
Operation Mode	DTIOv2 NuMCU
Camera Trigger	
Trigger Voltage	12V
Sink Current (per channel)	350 mA
Transient time	< 2 µs
Isolated Voltage	3750 Vrms
Operation Mode	DTIOv2 \NuMCU

1.5 Supported CPUs

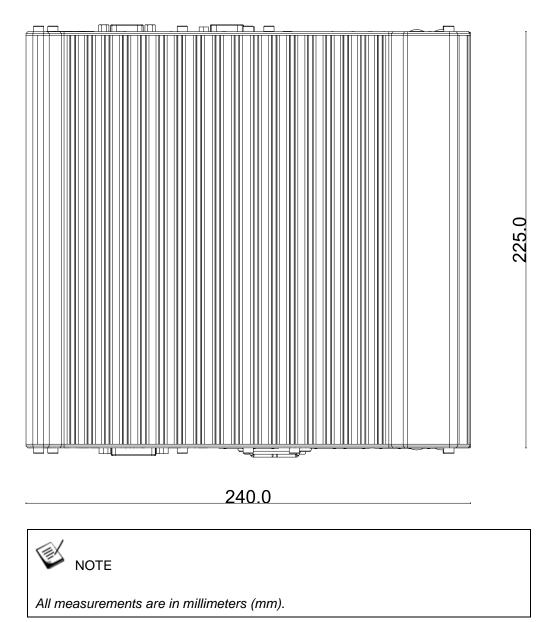
The system supports Intel® 6^{th} Gen. i7/ i5/ i3 processor via the LGA 1151 CPU socket.

- Intel® Core™ i7-6700 (8M Cache,3.4/ 4.0 GHz, 65W TDP)
- Intel® Core[™] i5-6500 (6M Cache, 3.2/ 3.6 GHz, 65W TDP)
- Intel® Core™ i7-6700TE (8M Cache, 2.4/ 3.4 GHz, 35W TDP)
- Intel® Core™ i5-6500TE (6M Cache, 2.3/ 3.3 GHz, 35W TDP)

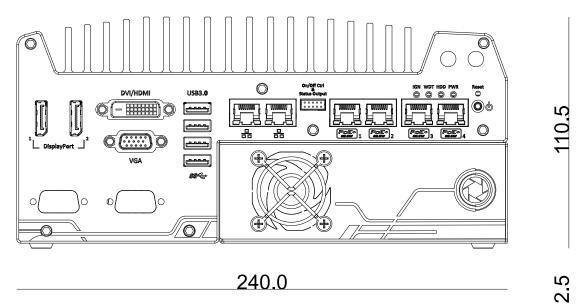
Alternatively, you may also select a processor from Intel's embedded solution "Products formerly Skylake" that utilizes LGA1151 CPU socket.

ΝΟΤΕ

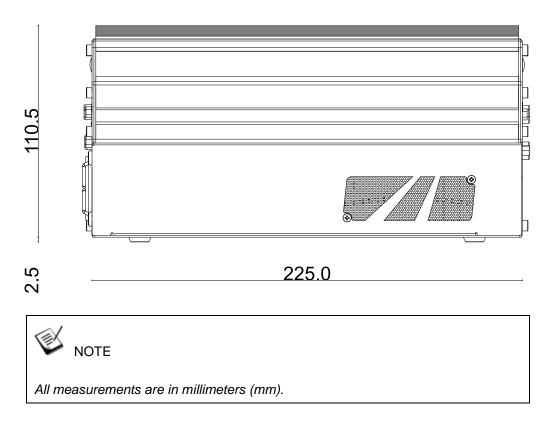
Other processors may result in different overall system power consumption or generate excess heat.


Avoid using CPUs not tested by Neousys Technology, as Neousys Technology may not be able guarantee the system's stability and functionality under its designated working environment.

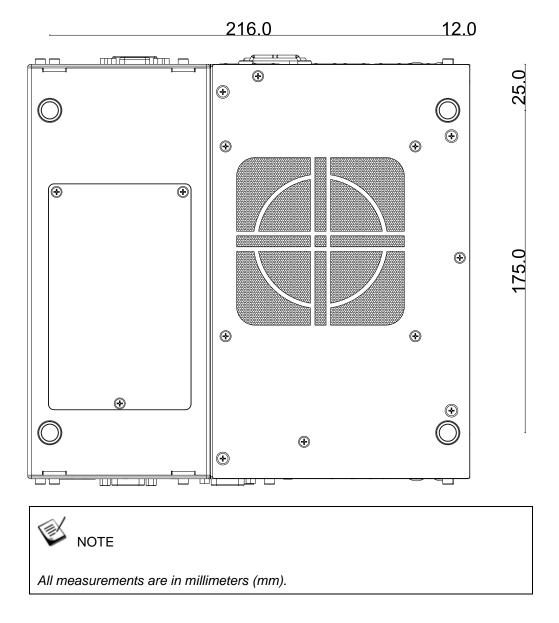
If in doubt, please contact Neousys technical support!


1.6 Dimension

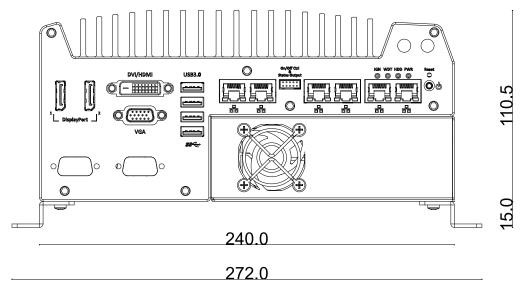
1.6.1 Superior View


1.6.2 Front Panel View

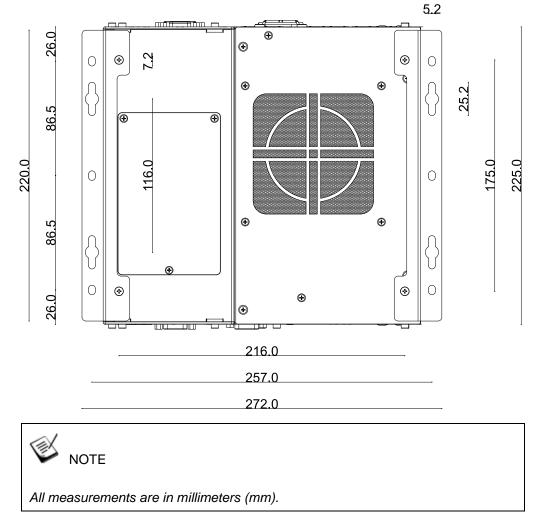
The numbers "2.5" represents the height of the rubber stands at 2.5mm.


1.6.3 Side View

The numbers "2.5" represents the height of the rubber stands at 2.5mm.



1.6.4 Bottom View



1.7 Dimensions with Mount Bracket

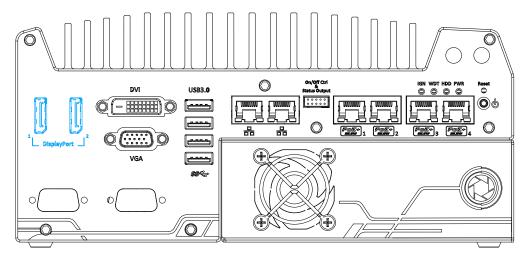
1.7.1 Front View

1.7.2 Bottom View

2 System Overview

Upon receiving and unpacking your system, please check immediately if the package contains all the items listed in the following table. If any item(s) are missing or damaged, please contact your local dealer or Neousys Technology.

2.1 Nuvis-5306RT Packing List


System Pack	Nuvis-5306RT	Qty
,	Nuvis-5306RT system	
1	(If you ordered graphics card/ CPU/ RAM/ HDD, please verify	1
	these items)	
	Accessory box, which contains	
	CPU bracket	1
	Neousys Drivers & Utilities DVD	1
	Wall-mounting bracket	2
	Foot pad	4
	3-pin pluggable terminal block	1
2	HDD thermal pad for 2.5" HDD/SSD (if HDD is not installed)	1
	Screw pack	1
	PORON® form strip, 91 x 12 x 10 mm	4
	Rubber spacer (available for barebone only)	4
	Fan 40x40x10 mm	1
	TB-10	1
	SCSI-68 Male to SCSI-68 Male 100cm cable	1

2.2 Nuvis-5306RT Front Panel

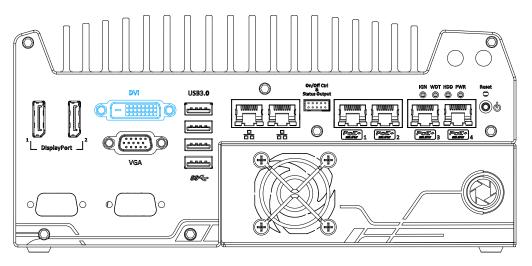
No.	ltem	Description		
1	<u>DisplayPort 1</u> <u>& 2</u>	Support display resolutions up to 4096 x 2304. Compatible with HDMI/ DVI via respective adapter/ cable (support resolution may vary).		
2	<u>DVI port</u>	DVI port DVI-D output supports resolution up to 1920x1200@60Hz and is compatible with other digital connections via an adapter		
3	VGA port			
4	USB 3.0 ports	USB 3.0 port, up to 5Gbit/s data transfer bandwidth.		
5	GbE ports	Gigabit Ethernet ports offer fast network access.		
6	On/ off control & status output	Allows for external switch extension when the system is placed inside a cabinet.		
7	<u>PoE+ GbE</u> <u>ports</u>	Power over Ethernet (PoE) port can provide both data connection and electric power to devices (eg. IP camera).		
8	System status			
9	Power button	Use this button to turn on or force shutdown the system.		
10	Reset button Use this button to manual restart the system.			
Area in Green	<u>Cassette</u> <u>Enclosure</u>	The cassette enclosure offers a separate compartment to manage thermal conditions and reduce installation complications of an add-on card.		

2.2.1 DisplayPort

The system has dual DisplayPort (DP) outputs which are digital display interfaces that mainly connect video source and carry audio to a display device. When connecting a single DP, it can deliver up to 4096 x 2304 resolution and each port can deliver up to 2880 x 1800 resolution when both DPs are connected in conjunction. The system is designed to support passive DP adapter/ cable. You can connect to display devices using DP-to-HDMI cable or DP-to-DVI cable.

DP-to-HDMI

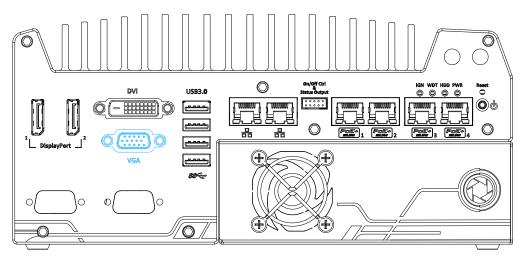
DP-to-DVI


The system supports triple independent display outputs in the following combination of VGA, DVI and DisplayPort. To support multiple display outputs and achieve best DVI output resolution in Windows, you need to install corresponding graphics driver. Please refer to section <u>OS Support and Driver Installation</u> for details.

Active display 1	Active display 2	Active display 3
DisplayPort	DisplayPort	DVI or VGA
DisplayPort	DVI	VGA

Triple Independent Display Configuration (resolution may be limited)

2.2.2 DVI Port


DVI-D transmits graphics data in digital format and therefore can deliver better image quality at high resolution. The DVI connector on the front panel can either output DVI signals or other digital signals (via an adapter/ cable) depending on the display device connected. It supports resolutions up to 1920x1200@60Hz.

The system supports triple independent display outputs in the following combination of VGA, DVI and DisplayPort. To support multiple display outputs and achieve best DVI output resolution in Windows, you need to install corresponding graphics driver. Please refer to section <u>OS Support and Driver Installation</u> for details.

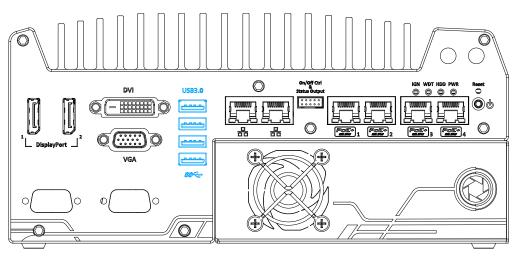
Active display 1	Active display 2	Active display 3
DisplayPort	DisplayPort	DVI or VGA
DisplayPort	DVI	VGA

2.2.3 VGA Port

VGA connector is the most common video display connection. The VGA output supports up to 1920x1200@60Hz resolution. By default, the VGA output is set to "always-on". For users who want to use only digital display interface (eg. DVI or DP), the VGA Output setting can be disabled. To disable, press F2 upon system startup, go to "Advanced > System Agent (SA) Configuration > Graphics Configuration > VGA Output > [Disable].

The system supports triple independent display outputs in the following combination of VGA, DVI/ HDMI and DisplayPort. To support multiple display outputs and achieve best DVI output resolution in Windows, you need to install corresponding graphics driver. Please refer to section <u>OS Support and Driver Installation</u> for details.

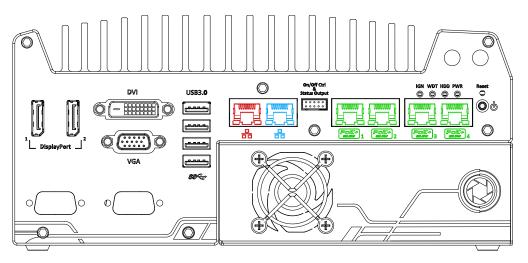
Active display 1	Active display 2	Active display 3
DisplayPort	DisplayPort	DVI or VGA
DisplayPort	DVI	VGA


Triple Independent Display Configuration (resolution may be limited)

NOTE

Please make sure your VGA cable includes SDA and SCL (DDC clock and data) signals for correct communication with monitor to get resolution/timing information. A cable without SDA/ SCL can cause blank screen on your VGA monitor due to incorrect resolution/timing output.

2.2.4 USB3.0 Port



The system offers four USB 3.0 (SuperSpeed USB) ports on its front panel. They are implemented via native xHCI (eXtensible Host Controller Interface) controller in Q170 chipset and are backward compatible with USB 2.0, USB 1.1 and USB 1.0 devices. Legacy USB support is also provided so you can use USB keyboard/mouse in DOS environment.

Due to the nature that XHCI driver is not included natively in Windows 7, you may encounter the issue of USB keyboard/mouse not working when installing Windows 7. Neousys offers a Windows-based batch file and step-by-step guide to help you. Please refer to <u>Appendix A Windows 7 Installation</u> for information on installing Windows 7.

2.2.5 Ethernet Port / PoE

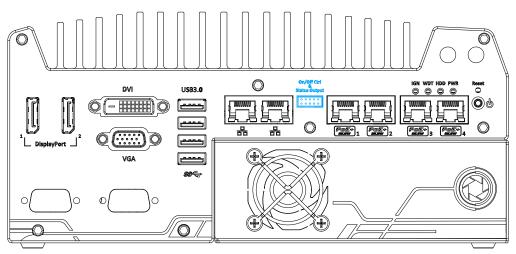
The system offer two GbE ports (in **red** and **blue**) and four additional PoE (Power over Ethernet) ports marked in **green**. The port marked in **blue** is implemented using Intel[®] I219-LM that supports Wake-on-LAN and is also compatible with <u>Intel[®] AMT</u> (<u>Active Management Technology</u>) to support advanced features such as remote SOL desktop and on/off.

Power over Ethernet (PoE) supplies electrical power and data on a standard CAT-5/CAT-6 Ethernet cable. Acting as a PoE PSE (Power Sourcing Equipment), compliant with IEEE 802.3at, each PoE port delivers up to 25W (Max. 80W total) to a Powered Device (PD). PoE can automatically detect and determine if the connected device requires power or not, so it is compatible with traditional Ethernet devices as well.

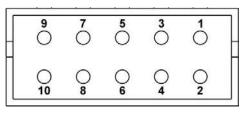
Each port has one dedicated PCI Express link for maximum network performance. Please refer to the table below for LED connection statuses.

LED Color	Status	Description	
	Off	Ethernet port is disconnected	
Yellow	On	Ethernet port is connected and no data transmission	
	Flashing	Ethernet port is connected and data is transmitting/receiving	

Active/Link LED (Right)

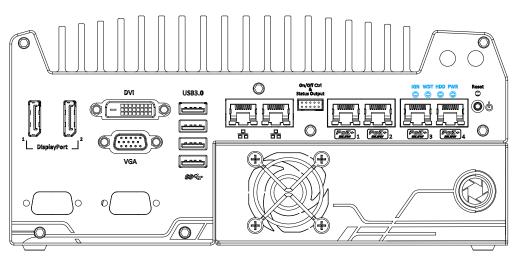

Speed LED (Left)

LED Color	Status	Description
	Off	10 Mbps
Green or Orange	Green	100 Mbps
Orange	Orange	1000 Mbps


To utilize the GbE port in Windows, you need to install corresponding driver for Intel[®] I210-IT/ I219-LM GbE controller.

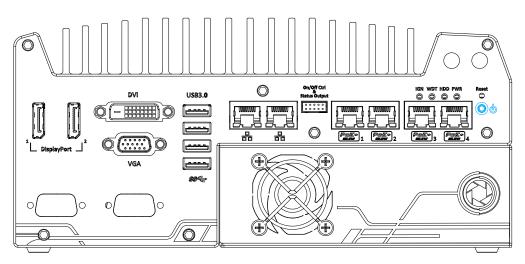
2.2.6 On/ Off Ctrl & Status Output

The "On/ Off Control Ctrl & Status Output" connection allows for external switch and LED indicator extension. It is useful when the system is placed in a cabinet or a not easily accessed location. This function is provided via a 2x5 2.0mm pitch wafer connector.



Pin#	Definition	Description	
1	Ctrl+	[Input] Remote on/off control, connecting to an external	
2	Ctrl-	switch to turn on/off the system (polarity is negligible).	
3	Power+	[Output] System power indicator, on if system is turned	
4	Power-	on, off if system is turned off.	
5	HDD+	[Output] Hard drive indicator, flashing when SATA hard	
6	HDD-	drive is active.	
7	Standby Power+	[Output] Standby power indicator, lighting up when DC	
8	Standby Power-	power is applied and system is in S5 (standby) mode.	
9	WDT+	[Output] Watchdog timer indicator, flashing when	
10	WDT-	watchdog timer is started.	

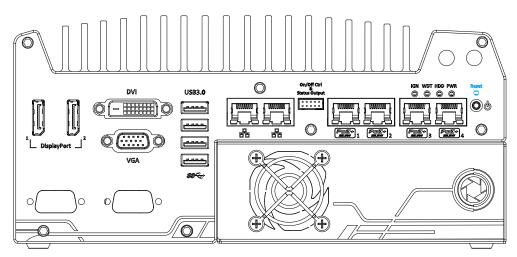
Please make sure the polarity is correct when you connect the external LED indicator to the Status LED Output. The status LED output has a built-in series resistor and provides 3.3V, 10mA current, which means you can use these pins o directly drive an external LED indicator.


2.2.7 System Status LED

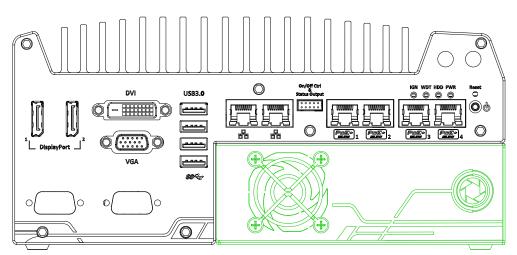
There are four LED indicators on the front panel: PWR, HDD, WDT and IGN. The descriptions of these four LEDs are listed in the following table.

Indicator	Color	Description
IGN	NA	NA
WDT	Yellow	Watchdog timer indicator, flashing when WDT is active
HDD	Red	Hard drive indicator, flashing when SATA drive is active
PWR	Green	Power indictor, lid when system is on

2.2.8 Power Button



The power button is a non-latched switch for ATX mode on/off operation. To turn on the system, press the power button and the PWR LED should light-up green. To turn off the system, issuing a shutdown command in OS is preferred, or you can simply press the power button. To force shutdown when the system freezes, press and hold the power button for 5 seconds. Please note that there is a 5-second interval


between on/off operations (i.e. once turning off the system, there is a 5-second wait before you can power-on the system).

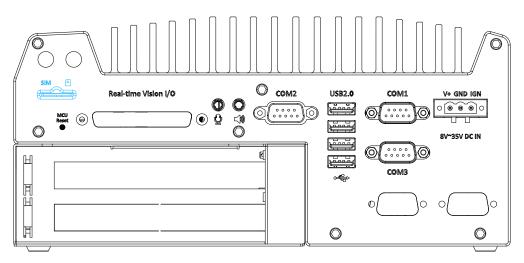
2.2.9 Reset Button

The reset button is used to manually reset the system in case of system halt or malfunction. To avoid unexpected resets, the button is purposely placed behind the panel. To reset, please use a pin-like object (eg. tip of a pen) to access the reset button.

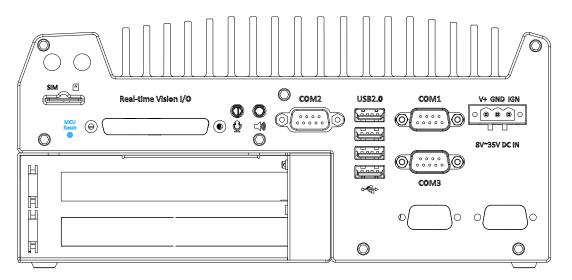
2.2.10 Cassette Enclosure

Neousys' patented expansion Cassette (R.O.C. Patent No. M456527) is an innovation design for fanless controller. It provides a separated compartment to accommodate an add-on card. It effectively manages thermal conditions of both the system and the add-on card. The modular concept brought by Cassette also reduces the complexity of installing and replacing an add-on card in the fanless controller. The Cassette enclosure itself incorporates an innovative mechanical design to effectively deal with the heat generated by GPU. This patented architecture (R.O.C. Patent No. M534371) creates a sealed wind tunnel to bring in cold air to the GPU

and expels hot air via a system fan. The design offers the system extreme stability and reliability when operating at 60°C with the GPU under 100% load. The expansion Cassette enclosure accepts dual-slot graphics cards with up to 75W TDP.

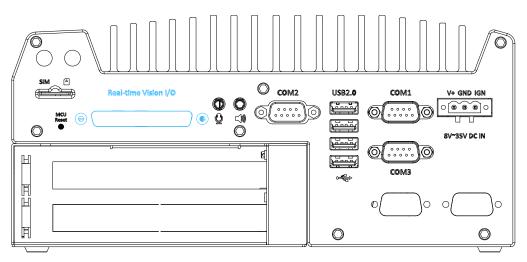

2.3 Nuvis-5306RT Rear Panel

No.	Item	Description
1	SIM card slot	With a 3G/ 4G module installed, insert a SIM card to
		access the operator's network.
2	MCU reset button	Press the button to reset the MCU.
3	Real-time Vision I/O	Vision specific trigger/ strobe control input/ output for
		vision/ imagery purposes.
4	Microphone-in jack	Microphone-in jack for voice (microphone) input.
5	Speaker-out jack	Speaker-out jack for sound output.
6	COM ports	There are 3 COM ports for communicating with external
		devices.
7	USB 2.0	The USB 2.0 ports are compatible with USB 1.1 / 1.0.
8	3-pin terminal block	Compatible with DC power input from 8~35V, the terminal
	(DC/ ignition input)	block is also used for ignition signal input.
9	Area in green	The panel opening of the cassette enclosure. When an
		expansion card is installed, connectors are accessible on
		this panel.

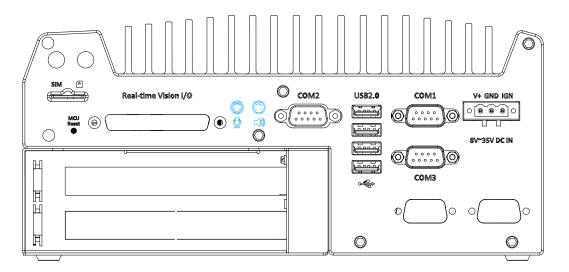


2.3.1 SIM Card Slot

On the rear panel, there is a panel-accessible SIM socket. By installing a 3G/4G module onto the internal mini-PCIe port, you can have Internet access via telecom operator's network. The SIM socket is a push-push type. The push-push mechanism means the SIM card is push-to-install and push-to-retrieve. Please note that the SIM card must be inserted upside down (gold fingers facing upward).

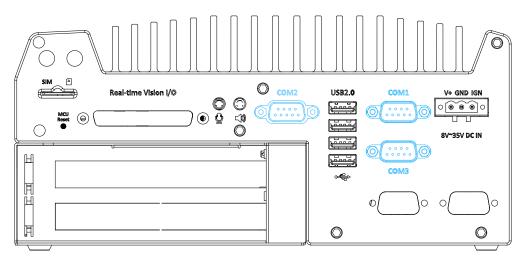

2.3.2 MCU Reset

You may use the MCU reset button to manually reset the MCU without resetting the whole system. To avoid unexpected resets, the button is purposely placed behind the panel. To reset, please use a pin-like object (eg. tip of a pen) to access the reset button.

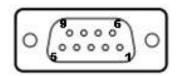


2.3.3 Real-time Vision I/O

Real-time vision I/O is managed by Neousys' patented MCU-based architecture and DTIO/ NuMCU firmware for microsecond-scale real-time I/O control. It also supports various machine vision peripherals such as CC/ CV lighting controller, quadrature encoder input, PWM output, isolated DI/ DO, 12V camera trigger output etc.

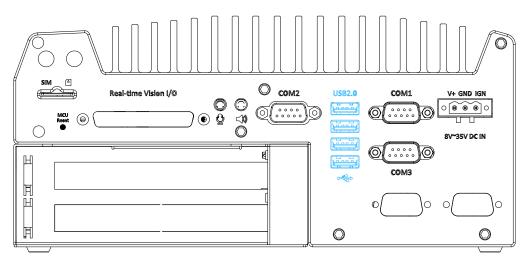

2.3.4 3.5mm Speaker-out/ Microphone-in Jack

The audio function on Nuvis-5306RT uses $Intel^{
entire{n}}$ High Definition Audio in Q170 chipset and Realtek ALC262 codec. There are two audio function jacks, the equation point is used for microphone input, and the <math>
equation point is used for speaker / headphone output. To utilize the audio function in Windows, you need to install corresponding drivers for both Intel[®] Q170 chipset and Realtek ALC262 codec.



2.3.5 COM Ports

The system has three COM ports for communicating with external devices. COM1, COM2 and COM3 ports are located on the rear panel via 9-pin D-Sub male connectors. They are implemented using industrial-grade ITE8786 Super IO chip (-40 to 85°C) and provide up to 115200 bps baud rate.


COM1 and COM3 are software-configurable RS-232/422/485 ports and COM2 is a standard 9-wire RS-232 port. The operation mode, slew rate and termination of COM1 and COM3 can be set in BIOS setup utility. The following table describes the pin definition of COM ports.

		COM2		
Pin#	RS-232 Mode	RS-422 Mode	RS-485 Mode (Two-wire 485)	RS-232 Mode
1	DCD	-	-	DCD
2	RX	422 TXD+	485 TXD+/RXD+	RX
3	ТХ	422 RXD+	-	ТХ
4	DTR	422 RXD-	-	DTR
5	GND	GND	GND	GND
6	DSR	-	-	DSR
7	RTS	-	-	RTS
8	CTS	422 TXD-	485 TXD-/RXD-	CTS
9	RI	-	-	RI

2.3.6 USB2.0 Ports

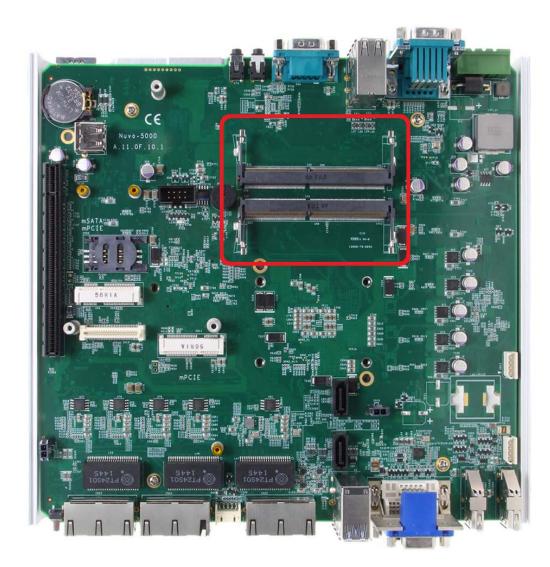
The USB2.0 ports are implemented via native xHCI (eXtensible Host Controller Interface) controller in Q170 chipset and are backward compatible with USB 1.1 and USB 1.0 devices. Legacy USB support is also provided so you can use USB keyboard/mouse in DOS environment.

Due to the nature that XHCI driver is not included natively in Windows 7, you may encounter USB keyboard/ mouse not working when installing Windows 7. Neousys offers a Windows-based batch file and step-by-step guide to help you. Please refer to <u>Appendix A Windows 7 Installation</u> for information on installing Windows 7.

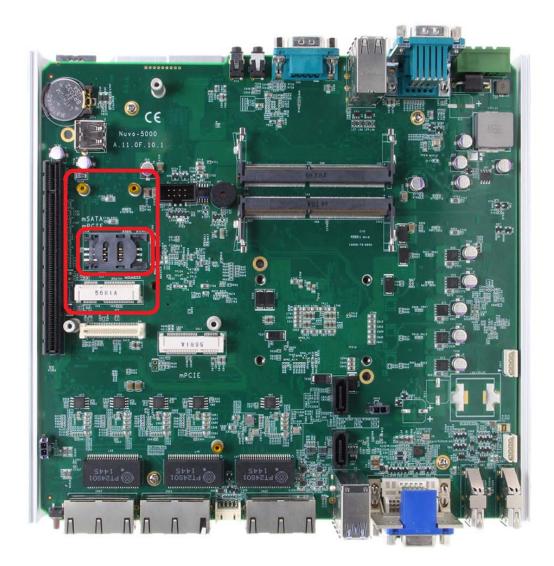
≙ SIM ⊘ сом2 Real-time Vision I/O USB2.0 COM1 5 Æ Ē 0.....)0 0 0 Reset \bigcirc 8V~35V DC IN Ø..... \odot đ Ш сомз Ы Ц Ø С IC) Ħ \bigcirc \bigcirc

2.3.7 3-Pin Terminal Block for DC and Ignition Input

The system allows an 8 to 35V DC power input from via a 3-pin pluggable terminal block. The screw clamping mechanism is a reliable way to wire DC power. The ignition signal input (IGN) is not applicable to the system.


Please make sure the voltage of DC power is correct before you connect it to the system. Supplying a voltage over 35V will damage the system.

2.4 Internal I/O Components


The internal components of Nuvis-5306RT series include two SODIMM sockets, SATA ports, mSATA, mini-PCIe sockets and an internal USB port.

2.4.1 DDR4 SO-DIMM Slots

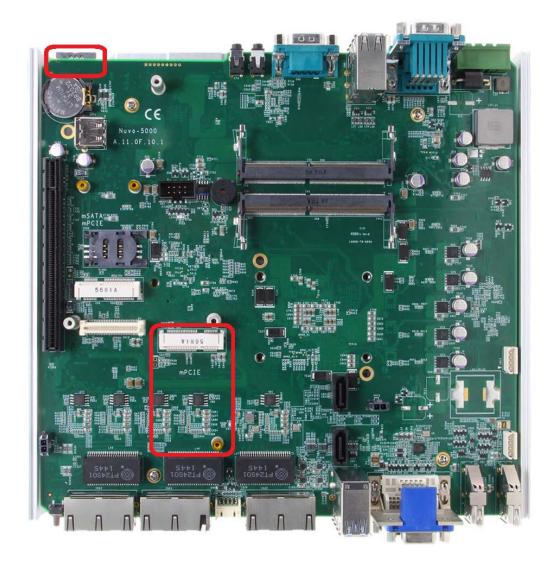
The system provides two 260-pin DDR4 memory SO-DIMM sockets. It can support up to 32GB maximum capacity by installing two 16GB DDR4 2133 MHz SODIMM modules.

2.4.2 Dual Mode mSATA/ mini-PCIe Socket

The system provides a dual mode mSATA/ mini-PCIe socket that is in compliance with mini-PCIe specification rev. 1.2. You can install either an mSATA SSD or mini-PCIe module into this socket and the system will automatically detect and configure it to run PCIe or SATA signals. This mini-PCIe socket is designed with SIM card support. With a SIM card installed, your system can access the internet via your network provider's 3G/ 4G network.

For wireless (WIFI/ 3G/ 4G) communication, multiple SMA antenna apertures can be located on the front and rear panel.

Dual mode mSATA/ mini-PCIe socket definition

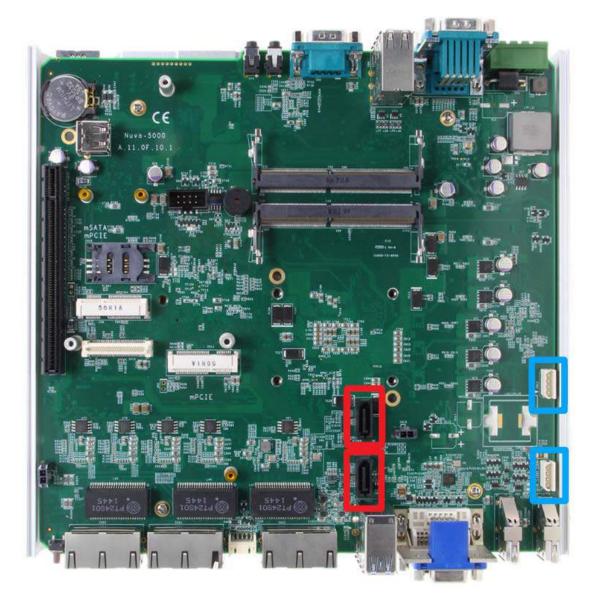

51 49	51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1							
52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2								
Pin	Signal (mPCle)	Signal (mSATA)	Pin #	Signal (mPCle)	Signal (mSATA)			
1	WAKE#	-	2	+3.3Vaux	+3.3Vaux			
3	COEX1	-	4	GND	GND			
5	COEX2	-	6	+1.5V	+1.5V			
7	CLKREQ#	-	8	UIM PWR	-			
9	GND	GND	10	UIM DATA	-			
11	REFCLK-	-	12	UIM CLK	-			
13	REFCLK+	-	14	UIM RESET	-			
15	GND	GND	16	UIM VPP	-			
Mechanical Key								
17	Reserved*	-	18	GND	GND			
19	Reserved*	-	20	W DISABLE#	-			
21	GND	GND	22	PERST#	-			
23	PERn0	SATA Rxp	24	+3.3Vaux	+3.3Vaux			
25	PERp0	SATA Rxn	26	GND	GND			
27	GND	GND	28	+1.5V	+1.5V			
29	GND	GND	30	SMB CLK	SMB CLK			
31	PETn0	SATA Txn	32	SMB DATA	SMB DATA			
33	PETp0	SATA Txp	34	GND	GND			
35	GND	GND	36	USB D-	-			
37	GND	GND	38	USB D+	-			
39	+3.3Vaux	+3.3Vaux	40	GND	GND			
41	+3.3Vaux	+3.3Vaux	42	LED WWAN#	-			
43	GND	-	44	LED WLAN#	-			
45	Reserved	-	46	LED WPAN#	-			
47	Reserved	-	48	+1.5V	+1.5V			
49	Reserved	-	50	GND	GND			
51	Reserved	-	52	+3.3Vaux	+3.3Vaux			

Some off-the-shelf mini-PCIe 4G modules are not compliant to standard mini-PCIe interface. They use 1.8V I/O signals instead of standard 3.3V I/O and may have signal conflict. Please consult with Neousys for compatibility when in doubt! Installing an incompatible 4G module may damage the system or the module itself may be damaged.

2.4.3 mini-PCle Socket

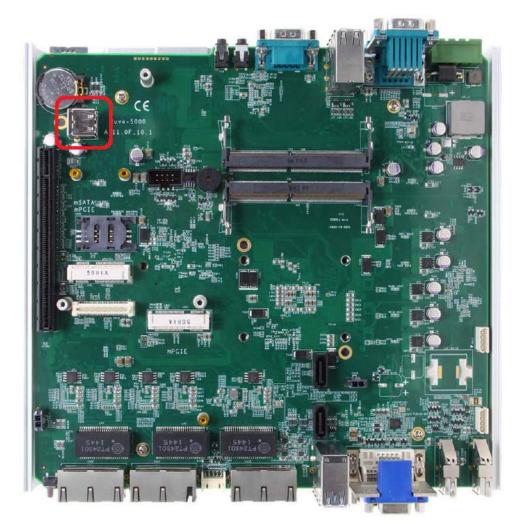
This mini-PCIe socket works in cooperation with the panel-accessible SIM slot. By installing a mini-PCIe module, you can add additional features to your system such as WIFI, GPS, CAN bus, analog frame grabber, etc. You can also install a 3G/4G module and SIM card for internet via your service provider's 3G/4G network.

For wireless (WIFI/ 3G/ 4G) communication, multiple SMA antenna apertures can be located on the front and rear panel.


mini-PCle Pin Definition

51 49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1								
52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4								
Pin #	Signal	Pin #	Signal					
1	WAKE#	2	+3.3Vaux					
3	COEX1	4	GND					
5	COEX2	6	+1.5V					
7	CLKREQ#	8	UIM PWR					
9	GND	10	UIM DATA					
11	REFCLK-	12	UIM CLK					
13	REFCLK+	14	UIM RESET					
15	GND	16	UIM VPP					
	Mechanical Key							
17	Reserved* (UIM C8)	18	GND					
19	Reserved* (UIM C4)	20	W DISABLE#					
21	GND	22	PERST#					
23	PERn0	24	+3.3Vaux					
25	PERp0	26	GND					
27	GND	28	+1.5V					
29	GND	30	SMB CLK					
31	PETn0	32	SMB DATA					
33	PETp0	34	GND					
35 37	GND GND	<u>36</u> 38	USB D-					
37	+3.3Vaux	<u> </u>	USB D+ GND					
41	+3.3Vaux +3.3Vaux	40	LED WWAN#					
43	GND	44	LED WUAN#					
45	Reserved	46	LED WPAN#					
47	Reserved	48	+1.5V					
49	Reserved	50	GND					
51	Reserved	52	+3.3Vaux					

Some off-the-shelf mini-PCIe 4G modules are not compliant to standard mini-PCIe interface. They use 1.8V I/O signals instead of standard 3.3V I/O and may have signal conflict. Please consult with Neousys for compatibility when in doubt! Installing an incompatible 4G module may damage the system or the module itself may be damaged.


2.4.4 SATA Ports

The system provides two SATA ports which support Gen3, 6 Gb/s SATA signals. Each SATA port (indicated in **red**) features a 7-pin SATA connector and a 4-pin power connector.

The power plug (indicated in **blue**) accommodates a 2.5" HDD/ SSD in internal HDD bracket. Standard 22-pin SATA connectors are provided with the system. You may refer to the <u>SATA Configuration</u> section for SATA settings.

2.4.5 Internal USB Port

The system has an internal USB2.0 port on the PCBA. You can utilize this USB port to connect a USB protection dongle inside the chassis of the system.

3 System Installation

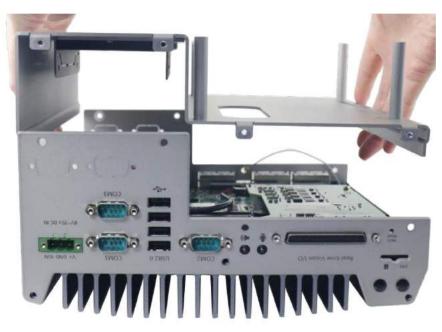
Before disassembling the system enclosure and installing components and modules, please make sure you have done the following:

- It is recommended that only qualified service personnel should install and service this product to avoid injury or damage to the system.
- Please observe all ESD procedures at all times to avoid damaging the equipment.
- Before disassembling your system, please make sure the system has powered off, all cables and antennae (power, video, data, etc.) are disconnected.
- Place the system on a flat and sturdy surface (remove from mounts or out of server cabinets) before proceeding with the installation/ replacement procedure.

3.1 Disassembling the System Enclosure

- 1. Turn the system upside-down.
- 2. Unscrew the four (4) screws indicated at the bottom of the Cassette enclosure.

3. Gently lift and separate the Cassette enclosure from the system enclosure.



4. Remove the seven screws on the front panel shown in the illustration below.

5. Remove the seven screws on the rear panel shown in the illustration below.

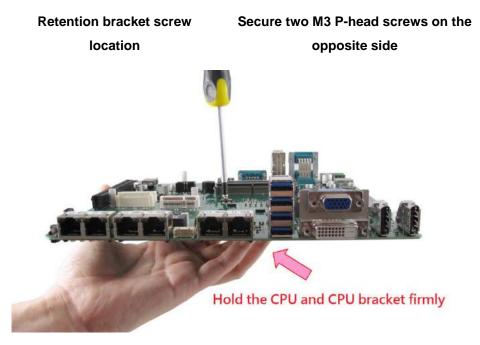
6. Gently lift the base panel and remove front and rear panels

3.2 CPU Installation Procedure

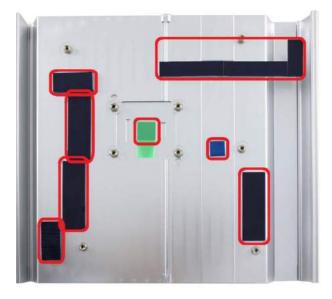
- 1. DO NOT remove the CPU from its container / tray before it is ready to be installed.
- 2. Once the enclosure panels have been removed and to install a CPU into the system, remove the four (4) M3 P-head screws in the illustration below.

 Gently lift the motherboard off the heatsink and turn the motherboard upside-down. You'll see the CPU socket protective cover, place finger tips under the sign "REMOVE" for leverage. Gently lift the cover.

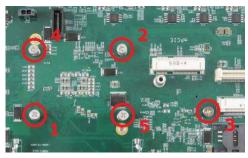
With the protective cover removed, please be careful when handling the motherboard. DO NOT touch the pins in the LGA socket!


4. Remove the CPU from its container/ tray. Match the two notches on the side to the protrusions in the socket, gently lower the CPU into the socket.

 Locate the CPU retention bracket in the accessory box. Place the retention bracket on the CPU and hold it in place, turn the motherboard around and secure the bracket by tightening two (2) M3 P-head screws.



Hold bracket/ CPU in place along with the motherboard



6. Remove all thermal pad protective films pre-placed on the heatsink.

- 7. With the four (4) motherboard standoffs aligned (please refer to step 2), gently lower the motherboard onto the heatsink
- 8. Secure the four (4) M3 P-head motherboard screws (indicated in yellow) and from the accessory box, five (5) M3 spring screws (indicated in red). Gradually tighten the five screws in the following order for even pressure.

Securing the motherboard

Secure five CPU/ heatsink spring screws in order

- 9. Reinstall the system enclosure and panel when done.
- 10. If you need to install other components, please refer to respective sections.

3.3 Memory Module Installation

There are two memory SO-DIMM slots on the motherboard that support a total maximum of 32GB DDR4-2133. Please follow the procedures below to replace or install the memory modules.

- 1. To disassemble the enclosure, please refer to the section "<u>Disassembling the</u> <u>System Enclosure</u>".
- 2. The SO-DIMM slots can be located once the bottom cover of the enclosure has been removed.

 To install the memory module, insert gold fingers of the module into the slot at 45 degree angle.

4. Push down on the edge of the module and the clips on the side should clip the module into place.

- 5. Repeat steps above to install the other module.
- 6. Reinstall the system enclosure and panel when done.
- 7. If you need to install other components, please refer to respective sections.

3.4 Internal 2.5" SATA HDD/ SSD Installation

The system has two SATA ports for connecting SATA HDD/ SSD, one internal and one external. Please follow the procedures below to install or replace the hard drives.

1. Place the system upside down on a flat surface and loosen the three (3) screws show below.

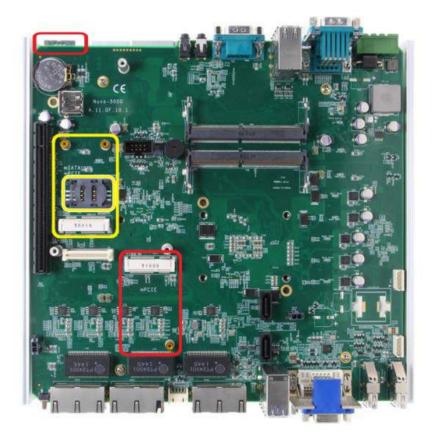
2. Remove the protective films on the thermal pad situated in the center of the bracket.

 Place the HDD/ SSD on the bracket, gently press it down against the thermal pad. From the accessory box, use M3 flat-head screws to secure the HDD/ SSD. Make sure the HDD/ SSD is secured in the same orientation as shown in the illustration below.

4. Connect the SATA cable inside the enclosure to the HDD/ SSD

 Gently wiggle the bracket back into the enclosure and secure it with three (3) M3 flat-head screws.

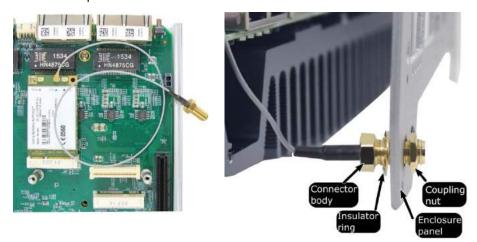
3.5 mini-PCIe Module Installation


Please refer to the following procedures on how to install a mini-PCIe module.

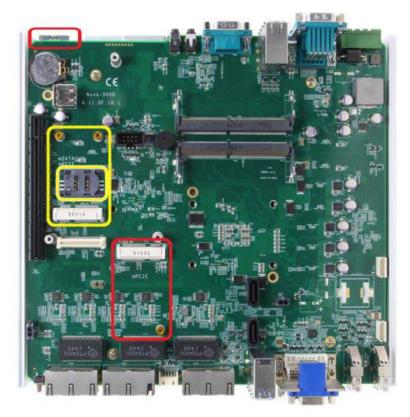
- 1. To disassemble the enclosure, please refer to the section "<u>Disassembling the</u> <u>System Enclosure</u>".
- 2. Remove the MezIO module by unfastening the three (3) screws shown below.

3. Location of the mini-PCIe sockets on the motherboard shown below. The SIM slot of mini-PCIe socket (in red) is situated on the rear panel.

4. Inset the mini-PCIe module's gold finger on a 45 degree angle into the socket, gently press the module down and secure it with an M2.5 P-head screw.


45 degree insertion angle

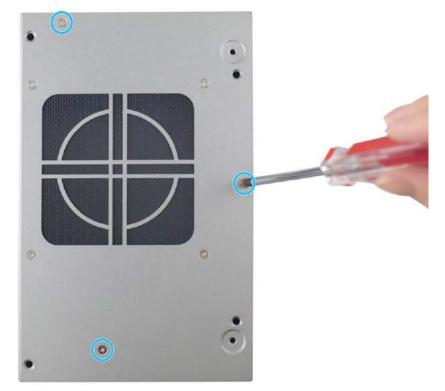
Secured with M2.5 P-head screw


5. Clip on the IPEX-to-SMA cable to the module and attach the antenna onto the front or rear panel.

Clip on IPEX-to-SMA cable

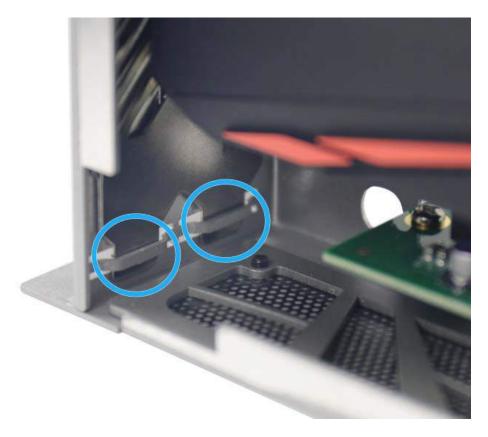
Attach antenna to panel

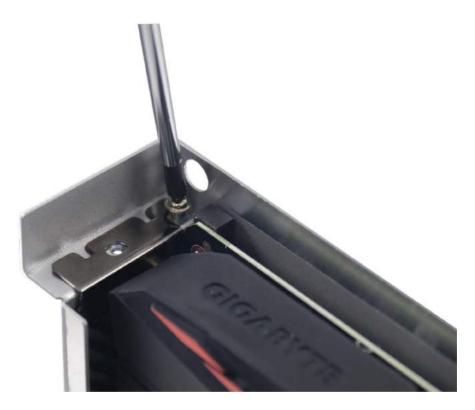
6. Insert the SIM card (if necessary) for your mini-PCIe module.


- 7. The mini-PCIe socket (in red) works in conjunction with the panel-accessible SIM slot on the rear panel, while other mini-PCIe sockets work with internal SIM slots. Insert the SIM upside down for 3G/ 4G access via your provider's network. Push the SIM card into the panel, make sure it clicks into the slot and is seated firmly (not protruding) in the slot.
- 8. Reinstall the system enclosure and panel when done.
- 9. If you need to install other components, please refer to respective sections.

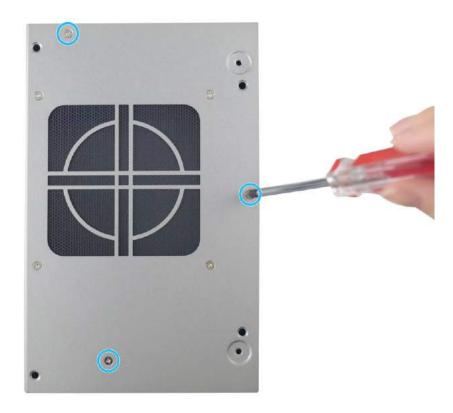
3.6 PCIe Card Installation in Cassette Module

For demonstration, we will be using a NVIDIA Geforce GTX 1050Ti as an example.

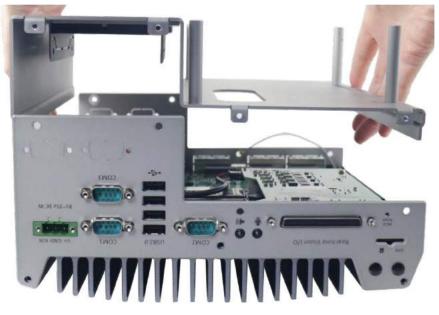

 Unfasten the three M3 flat-head screws at the bottom of the Cassette module (please refer to <u>Disassembling the System Enclosure</u> on Cassette module removal) and remove Cassette module's bottom panel.


2. Remove the PCIe slot cover and gently lower the PCIe graphics card by matching the PCIe gold fingers into the slot.

3. Make sure the bottom of the graphics card slot cover is properly inserted into the hinge on the enclosure.



4. Secure the graphics card's slot cover with two (2) M3 flat-head screws.



5. Reinstall the Cassette enclosure and secure it with the three (3) M3 flat-head screws shown below.

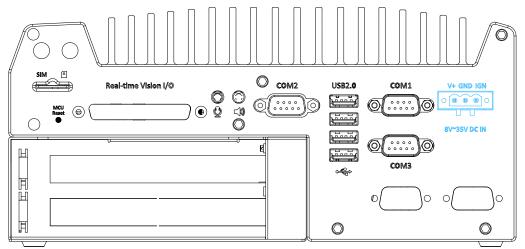
3.7 Installing the System Enclosure

1. To reinstall the system enclosure, fit the front and rear panels and gently lower the base panel.

2. Secure the seven (7) screws on the front panel.

3. Secure the seven (7) screws on the rear panel.

4. Gently lower the Cassette module while matching the four position poles.


5. Secure the Cassette module by securing the four (4) screws.

3.8 DC Power Connection

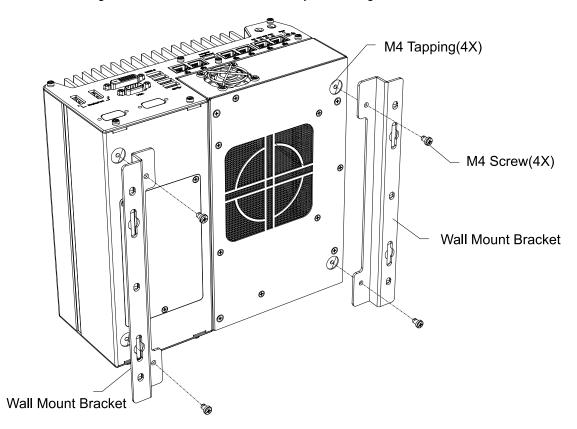
The system uses a 3-pin pluggable terminal block to accept 8~35V DC power input. It is a reliable, convenient and easy method to directly wire cables to the DC power connector. The pluggable terminal block is also used to accept ignition signal To connect DC power via the 3-pin pluggable terminal block, please refer to the procedures described below.

- Before connecting the cables, please make sure the DC power supply is unplugged!
- Take the 3-pin pluggable terminal block out of the accessory box. The terminal block fits the wires with a gauge of 12~24 AWG.
- Carefully identify the positive and negative contacts of your DC power supply and the pluggable terminal block. The polarities between DC power supply and terminal block must be positive (+) to positive (+) and ground (GND) to ground (GND).

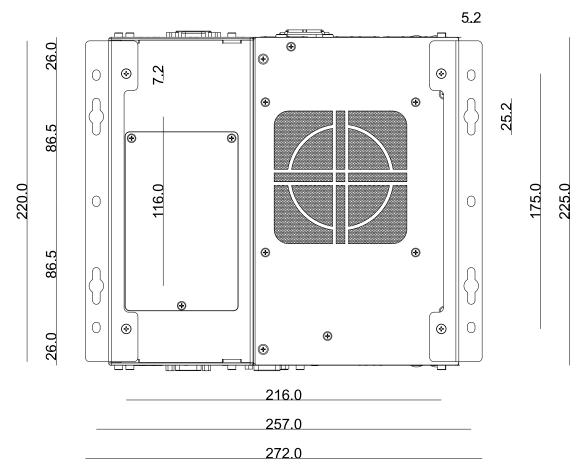
- 4. Insert the wires to the matching pluggable terminal block contacts and tighten clamping screws using a Philips screwdriver.
- 5. Plug in the terminal plug into the 3-pin pluggable terminal block on the system enclosure and secure the plug using a flat-head screwdriver.

The system accepts 8~35 VDC when using terminal block for DC input. Please make sure the voltage and polarity of DC power is correct before you connect and power on the system. Supplying a voltage over 35V or incorrect polarity will damage the system!

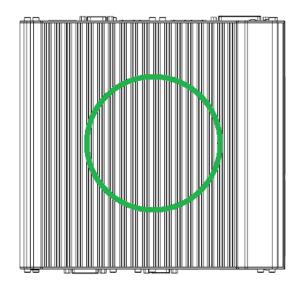
3.9 Wall Mount/ Anti-Vibration Bracket Installation

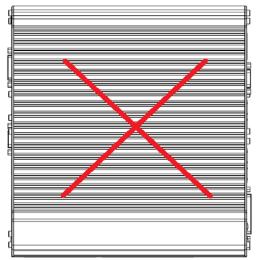

Nuvis-5306RT features a patented mechanical design that creates a sealed tunnel for air flow. To obtain best efficiency for heat dissipation, it is recommended that a minimum clearance of 20mm is reserved at the bottom side of Nuvis-5306RT controller. Nuvis-5306RT is shipped with stand-off brackets designed to create a 20mm clearance. To mount your Nuviso-5306RT controller on the wall or flat surface, please refer to the instructions listed below.

- 1. You will need to remove the four (4) rubber stands at the bottom of the enclosure if they have been attached.
- 2. For customers using customized mounting design, please make sure you have at least 20mm clearance underneath the system. Mounting the system without the recommended minimum clearance may significantly reduce GPU performance at high ambient temperature.


3.9.1 Wall Mount Bracket Installation

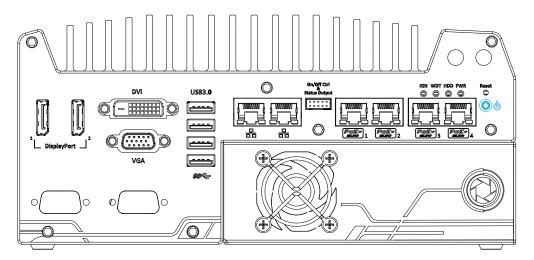
Get two wall-mounting brackets and four M4 screws from the accessory box.
 Fix the mounting brackets onto the bottom of the system using M4 screws.





2. Place the system on a flat surface and fix it with screws. You can also take advantage of the keyhole-shaped holes on mounting brackets to suspend the system on the Wall.

3. When wall mounting, please mount the system's in the direction so the heatsink's fins are placed vertically for optimal heat dissipation efficiency.

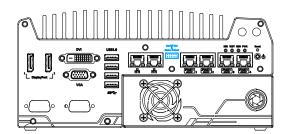

3.10 Powering On the System

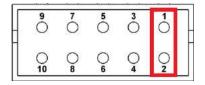
There are three methods to power on the system

- Pressing the power button
- Via an external non-latched switch
- Sending a LAN packet via Ethernet (Wake-on-LAN)

3.10.1 Powering On Using the Power Button

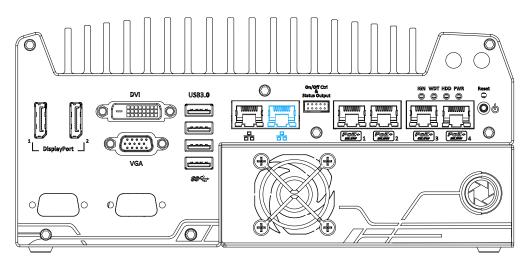
This is the simplest way to turn on your system. The power button on the front panel is a non-latched switch and behaves as the ATX-mode on/off control. With DC power connected, pushing the power button will turn on the system and the PWR LED indicator will light up. Pushing the button when system is on will turn off the system. If your operating system supports ATX power mode (i.e. Microsoft Windows or Linux), pushing the power button while the system is in operation will result in a pre-defined system behavior, such as shutdown or hibernation.


3.10.2 Powering On Using External Non-latched Switch


If your application demands the system to be placed inside a cabinet, you may use an external non-latched switch to power on/ off the system. The system provides a "<u>On/ Off Control Ctrl & Status Output</u>" connection (a 2x5, 2.0mm pitch wafer connector) for connecting a non-latched switch and acts as the ATX-mode power on/off control switch. The external non-latched switch acts exactly the same as the power button on the front panel. To setup and power on/ off the system using an external non-latched switch (ATX-mode), please follow the steps described below.

1. Acquire a non-latched switch with a 2x5, 2.0mm pitch wafer terminal and the switch must be connected to pin#1 and pin #2 (polarity is negligible).

 Connect the wafer terminal to the "On/Off Control Ctrl & Status Output" connector on the system


On/Off Control Ctrl & Status Output

Pin #1 and Pin #2

3. With DC power connected, pushing the power button will turn on the system and the PWR LED indicator will light up. Pushing the button when system is on will turn off the system. If your operating system supports ATX power mode (i.e. Microsoft Windows or Linux), pushing the power button while the system is in operation will result in a pre-defined system behavior, such as shutdown or hibernation.

3.10.3 Powering On Using Wake-on-LAN

Wake-on-LAN (WOL) is a mechanism to wake up a computer system from a S5 (system off with standby power) state via issuing a magic packet. The system's Wake-on-LAN compatible GbE port is shown below.

 NOTE

Please make sure the Intel chipset and Ethernet driver has been properly installed prior to setting up WOL function.

To enable WOL function, please set up WOL settings in the BIOS and in the operating system by follow the steps described below.

- 1. When the system boots up, press F2 to enter BIOS setup utility.
- 2. Go to the [Power] > [Wake On LAN] and set it to [Enabled].
- 3. Press F10 to "Save changes and exit BIOS" and allow the system boot into the operating system.
- 4. Once booted into the Windows system, press
 "Windows key + E", right-click on "Network
 > Properties > Change adapter settings".
 Locate and double-click on the adapter Intel®
 I219 Gigabit Network
 Connection, click on
 Configure...

Ethernet 1 Properties	×			
Networking Sharing				
Connect using:				
Intel(R) Ethemet Connection (2) I219-LM				
This connection uses the following items:				
	er 🗸			
	>			

5. Click on the **Power Management** tab and check the following options. Click on OK when done.

itel(R) Etherne	t Connection (2) I219-LM Pro	perties		
Teaming	VLANs	Driver	Details	Events	
General	Link Speed	Advanced	Power	Management	
Power Saver and Wake on LAN Options					
Power Saver C	ptions:				
	to ARP requests			^	
	to NS requests w	ithout waking s	ystem		
	ficient Ethernet			×	
Wake on LAN					
	Magic Packet			^	
	Pattern Match		_		
✓ Wake on Magic Packet from power off state					
Respond to A	RP requests with	iout waking sys	tem		
the system	apter to respond from sleep or hib ernate mode and	ernate. The sys	stem can remai	in in \land	
		1	ок	Cancel	

Magic Packet

The magic packet is a broadcast frame containing anywhere within its payload 6 bytes of all 255 (FF FF FF FF FF FF in hexadecimal), followed by sixteen repetitions of the target computer's 48-bit MAC address.

For example, NIC's 48-bit MAC Address is 78h D0h 04h 0Ah 0Bh 0Ch

DESTINATION SOURCE MISC

FF FF FF FF FF FF

78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

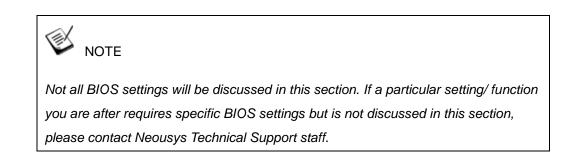
78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

- 78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C
- 78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C
- 78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

MISC CRC

There are some free tools available on Internet that can be used to send a magic packet. Please refer to the following link to understand more about <u>Magic Packet</u>.

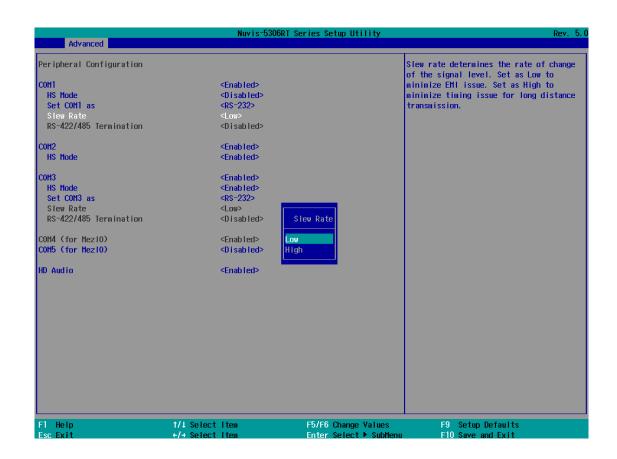


4 System Configuration

4.1 BIOS Settings

The system is shipped with factory-default BIOS settings meticulously programmed for optimum performance and compatibility. In this section, we'll illustrate some of BIOS settings you may need to modify. Please always make sure you understand the effect of change before you proceed with any modification. If you are unsure of the function you are changing, it is recommended to change one setting at a time to see its effect(s).

	Nuv i s-5306R1	Series Setup Utility	Rev. 5.
Main Advanced Security Powe	er Boot Exit		
InsydeH20 Version	NV53A002. Build18	0322	This is the help for the hour, minute,
Build Date	03/22/2018		second field. Valid range is from 0 to 23, 0 to 59, 0 to 59. INCREASE/REDUCE :
Processor Type		I) i3-6100TE CPU @ 2.70GHz	+/
CPU Speed:	2700 MHz		
L1 Data Cache:	32 KB		
L1 Instruction Cache:	32 KB 256 KB		
L2 Cache: L3 Cache:	200 KB 4096 KB		
L3 Cache: Number Of Processors:	2 Core(s) / 4 Th	vroad(a)	
Number of Processors:	2 Cure(s) 7 4 II	ireau(s)	
System Bus Speed	100 MHz		
System Memory Speed	2133 MHz		
Total Memory	16384 MB		
Channel A	16384 MB		
Channe I B	[Not Installed]		
System Time	[19:44:11]		
System Date	[03/16/2018]		
F1 Help	1/↓ Select Item	F5/F6 Change Values	F9 Setup Defaults
Esc Exit	+/→ Select Item	Enter Select 🕨 SubMenu	F10 Save and Exit


4.1.1 COM1 & COM3 Operating Mode

COM1 and COM3 of System series support RS-232 (full-duplex), RS-422 (full-duplex) and RS-485 (half-duplex) mode. You can set the COM1/ COM3 operating mode via BIOS settings.

	Nuv i s=5	306RT Series Setup Utility	Rev. 5.0
Advanced			
Peripheral Configuration			Set COM1 as RS-232 (Full-Duplex), RS422 (Full-Duplex) or RS-485 (Half-Duplex).
COM1	<enabled></enabled>		
HS Mode	<enabled></enabled>		
Set COM1 as	<rs-232></rs-232>		
Slew Rate	<low></low>		
RS-422/485 Termination	<disabled></disabled>		
COH2	<enabled></enabled>		
HS Mode	<enabled></enabled>		
сонз	<enabled></enabled>		
HS Mode	<enabled></enabled>		
Set COM3 as	< <u>R</u> S-232>		
Slew Rate	<low></low>	Set COM1 as	
RS-422/485 Termination	<disabled></disabled>	RS-232	
COM4 (for Mez10)	<enabled></enabled>	RS-232 RS-422	
COM5 (for Mezio)	<disabled></disabled>	RS-485	
		K3 403	
HD Audio	<enabled></enabled>		
F1 Help	t/↓ Select Item	F5/F6 Change Values	F9 Setup Defaults
Esc Exit	+/→ Select Item	Enter Select ▶ SubMenu	F10 Save and Exit

Another option in BIOS called "*Slew Rate*" defines how sharp the rising/falling edge is for the output signal of COM1/ COM3. For long-distance RS-422/485 transmission, you may set the "*Slew Rate*" option as "High" to improve signal quality.

To set COM port operating mode:

- 1. When system boots up, press F2 to enter BIOS setup utility.
- 2. Go to [Advanced] > [Peripheral Configuration].
- Highlight the COM port you wish to set and press Enter to bring up setting options. Use up/ down arrow to highlight your selection and press Enter.
- 4. Repeat step 2 to set other COM ports.
- 5. Press F10 to "Exit Saving Changes".

4.1.2 SATA Configuration

The system SATA controller supports two (2) operating modes: **AHCI** and **RAID** mode. **AHCI** mode, which exposes SATA's advanced capabilities such as hot swapping and native command queuing, is supported in several later version of operating systems. **RAID** mode provides redundant data storage (RAID 1) or a higher throughput (RAID 0). The system features built-in hardware RAID. No additional H/W or driver is needed to use RAID function.

Advanced		Nuvis-5306RT Se	ries Setup Ut	ility	Rev. 5.
SATA Configuration SATA Controller(s) SATA Hode Selection SATA Port #1 Port #1 Enable Hot Plug SATA Device Type SATA Device Type SATA Port #2 Port #2 Enable SATA Device Type SATA Port #3 (Cassette)		<enabled> <ahci> Empty <enabled> <disabled> <hard disk="" drive=""> Empty <enabled> <hard disk="" drive=""> Empty <enabled> <hard disk="" drive=""></hard></enabled></hard></enabled></hard></disabled></enabled></ahci></enabled>			Rev. 5. Determines how SATA controller(s) operate.
Port #3 Enable SATA Device Type SATA Port #4 (mSATA) Port #4 Enable SATA Device Type		<enabled>SATA Hod <hard disk<br="">Empty RAID <enabled></enabled></hard></enabled>	e Selection		
F1 Help Esc Exit	1/↓ Select +/+ Select		F5/F6 Change Enter Select		F9 Setup Defaults F10 Save and Exit

Recommended SATA controller mode settings:

- If you're using Windows Vista, Windows 7/ 8/ 10, or Linux kernel 2.6.19 or later, you can select **AHCI** mode for better performance.
- If you're installing two 2.5" HDD/ SSD and looking for data striping (RAID 0) or data mirroring (RAID 1), you can select **RAID** mode to utilize built-in RAID.

To set SATA controller mode:

- 1. When system boots up, press F2 to enter BIOS setup utility.
- 2. Go to [Advanced] > [SATA Configuration].

- 3. Highlight the SATA port you wish to set and press Enter to bring up setting options. Use up/ down arrow to highlight your selection and press Enter.
- 4. Repeat step 3 to set other SATA ports.
- 5. Press F10 to "Exit Saving Changes".

4.1.3 TPM Availability

Trusted Platform Module (TPM) is a hardware-based cryptoprocessor to secure hardware by integrating cryptographic keys into devices. The system is designed with on-board TPM 2.0 module. As TPM 2.0 requires 64-bit Windows 7/8/10 with UEFI boot mode, it is disable in BIOS by default. For customers who want to utilize TPM feature, you will need to enable TPM in BIOS as well as install Windows with UEFI mode.

Main Advanced Security Power Boo	Nuvis-5306RT Series Setu Exit	p Utility	Rev. 5.
Current TPM Device TPM Active PCR Hash Algorithm TPM Hardware Supported Hash Algorithm	<tpm 2.0=""></tpm>	When Hidden, don't expose	es TPM to O
TrE Protocol Version TPH Availability Clear TPH	<1.0> <available> []]</available>		
Supervisor Password	Not Installed		
Set Supervisor Password			
	TPM Availabilit Available Hidden		
		ange Values F9 Setup Defaults Pect ▶ SubMenu F10 Save and Exit	\$

To enable TMP availability:

- 1. When system boots up, press F2 to enter BIOS setup utility.
- Go to [Security] > [TPM Availability], press Enter to bring up Options, Available/ Hidden.
- 3. Highlight your selection, press Enter and press F10 to "Exit Saving Changes".

4.1.4 CPU SKU Power Configuration

The system supports various 6th-Gen Skylake LGA1151 CPUs. A unique feature, "**SKU Power Config**" is implemented in BIOS to allow users to specify user-defined SKU power limit. Although the system is designed to have best thermal performance with CPUs of 35W TDP, you can install a 65W CPU and limit its SKU power to obtain more computing power. This feature gives you the flexibility of CPU selection and great balance between computing power and operating temperature range.

Power	Nuvis	-5306RT Series Setup Utility	Rev. 5.0
Power & Performance Type SKU Package TDP	Intel(R) 65 W	Core(TM) i5-6500 CPU 0 3.20GHz	Configure SKU power limit according to performance consideration and operating environment.
SKU Power Config	<35 W>		
▶CPU - Power Hanagement Control ▶GT - Power Management Control		SKU Power Config Max. TDP 45 W 35 W 25 W 15 W	
	Select Item Select Item	F5/F6 Change Values Enter Select ▶ SubHenu	F9 Setup Defaults F10 Save and Exit

Here is our suggestion regarding specifying SKU power for system with 65W/ 54W/ 51W CPUs.

- For system running at up to 70°C ambient, specify SKU power to 35 W.
- For system running at up to 60°C ambient, specify SKU power to 45 W.
- For system running at up to 50°C ambient, specify SKU power to Max. TDP.

To configure the CPU SKU power limit:

- 1. When the system boots up, press F2 to enter BIOS setup utility.
- 2. Go to [Power] \rightarrow [Power & Performance].

Select a proper value of SKU power limit for [SKU Power Config] option.

4.1.5 Wake on LAN Option

Wake-on-LAN (WOL) is a mechanism which allows you to turn on your System series via Ethernet connection. To utilize Wake-on-LAN function, you have to enable this option first in BIOS settings. Please refer "Powering On Using Wake-on-LAN" to set up the system.

To enable/disable "Wake on LAN" option:

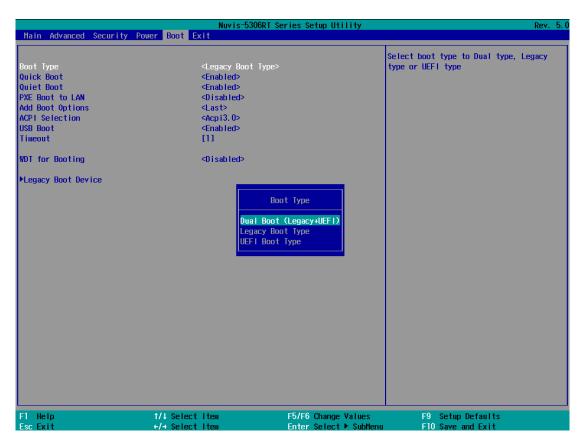
- 1. When system boots up, press F2 to enter BIOS setup utility.
- 2. Go to [Power] > [Wake on LAN].
- 3. Press Enter to bring up setting options, scroll to the setting you desire and press Enter to set.
- 4. Press F10 to "Exit Saving Changes.

4.1.6 Power On after Power Failure Option

This option defines the behavior of system when DC power is supplied.

Hain Advanced Security Power Boot Exit >CPU Configuration > >Power & Performance Wake on LAN <enabled> Auto Wake on S5 <disabled> Power On after Power Failure <s5 -="" off="" power=""> Power On after Power Failure S0 - Power On S0 - Power Off</s5></disabled></enabled>	
PPower & Performance Wake on LAN <enabled> Auto Wake on S5 <disabled> Power On after Power Failure <s5 -="" off="" power=""> Power On after Power Failure S0 - Power On</s5></disabled></enabled>	
Auto Wake on \$5 Power On after Power Failure <\$5 - Power Off> Power On after Power Failure \$0 - Power On	Specify what state to go to when power is re-applied after a power failure (G3 state).
Power On after Power Failure S0 - Power On	
S0 - Power On	
F1 Help 1/4 Select Item F5/F6 Change Values	F9 Setup Defaults

Value	Description
S0 – Power On	System is powered on when DC power is supplied.
S5 – Power Off	System is kept in off state when DC power is supplied.


To set "Power On after Power Failure" option:

- 1. When system boots up, press F2 to enter BIOS setup utility.
- 2. Go to [Power] > [Power On after Power Failure].
- Scroll down to highlight [Power On after Power Failure], press Enter to bring up setting options, S0 – Power On or S5 – Power Off, and press Enter to select the setting.
- 4. Press F10 to "Exit Saving Changes"

4.1.7 Boot Type (Legacy/ UEFI)

The system supports both Legacy and Unified Extensible Firmware Interface (UEFI) boot modes. UEFI is a specification proposed by Intel to define a software interface between operating system and platform firmware. Most modern operating systems, such as Windows 7/ 8/ 10 and Linux support both Legacy and UEFI boot modes. The Legacy boot mode uses MBR partition for disk and VBIOS for video initialization, the UEFI boot mode uses GPT partition which supports greater than 2TB partition size and GOP driver for faster video initialization.

It is recommended that:

- If you need greater than 2TB disk partition or want to use TPM 2.0 function, you shall choose UEFI boot mode and install operating system accordingly.
- Otherwise you can choose Legacy boot mode for most cases.

To configure Boot Type:

- 1. When system boots up, press F2 to enter BIOS setup utility.
- Go to [Boot] > [Boot Type], press Enter to bring up options, Dual Boot (Legacy+UEFI), Legacy Boot Type, UEFI Boot Type.
- 3. Highlight you selection and press Enter.
- 4. Press F10 to "Exit Saving Changes".

4.1.8 Boot Option for Newly Added Device

The Add Boot Options dedicates the boot sequence order of a newly added device (eg. USB flash drive). The setting allows you to set the newly added device as the first device or as the last device to boot.

Bot Chabled> Quick Boot Chabled> Quiet Boot Chabled> PXE Boot to LAN Olisabled> Add Boot Options Chabled> Add Boot Options Chabled> MCPI Selection Chabled> Timeout [1] WDT for Booting Olisabled> Hegacy Boot Device Iferst Ligacy Boot Device Iferst Ligacy Boot Device Fifs Change Values			5306RT Series Setup Utility	Rev. 5.
Boot Type <_degacy Boot Type> and Removables Quick Boot <_fnabled> VEE Boot to LAN <_fnabled> Add Boot Options <_fnabled> Add Boot Options <_fnabled> ACP1 Selection <_fnabled> USB Boot <_fnabled> Tineout (1) WDT for Booting <disabled> Legacy Boot Device </disabled>	Main Advanced Security Po	ower Boot Exit		
Filegacy Boot Device Add Boot Options First Last File 1/1 Select Item F5/F6 Change Values F9 Setup Defaults	Quick Boot Quiet Boot PXE Boot to LAN Add Boot Options ACPI Selection USB Boot	<enabled> <enabled> (Disabled> (Last> (Acpi3.0> (Enabled></enabled></enabled>	at Type>	Position in Boot Order for Shell,Network and Removables
Add Boot Options First Last F1 Help 1/4 Select Item F5/F6 Change Values F9 Setup Defaults	WDT for Booting	<disabled></disabled>		
	▶Legacy Boot Device		First	
	F1 Help Esc Exit	1/↓ Select Item +/+ Select Item	F5/F6 Change Values Enter Select ► SubMenu	

To set Add Boot Options:

- 1. When system boots up, press F2 to enter BIOS setup utility.
- 2. Go to [Boot] > [Add Boot Options], press Enter to bring up options, First or Last.
- 3. Highlight your selection and press Enter, press F10 to "Exist Saving Changes".

4.1.9 Watchdog Timer for Booting

The system BIOS has a useful feature which allows users to use watchdog timer to ensure a successful boot process. You can specify the timeout value for watchdog timer. Once the watchdog timer expires, BIOS issues a reset command to initiate another boot process. You can also set the behavior of how to stop the watchdog timer. There are two options in BIOS menu, "**Automatically after POST**" and "**Manually after Entering OS**". When "**Automatically after POST**" is selected, the BIOS automatically stop the watchdog timer after POST (Power-On Self Test) OK. When "**Manually after Entering OS**" is selected, it's user's liability to stop the watchdog timer when entering OS. This guarantees the system can always boot to OS, otherwise another booting process will be initiated. For information about programming watchdog timer, please refer to <u>Watchdog Timer & Isolated DIO</u>.

		06RT Series Setup Utility	Rev. 5.0
Main Advanced Security Po	wer Boot Exit		
Boot Type Quick Boot Quiet Boot PXE Boot to LAN Add Boot Options ACPI Selection USB Boot Timeout	<legacy boot<br=""><enabled> <disabled> <disabled> <last> <acpi3.0> <enabled> [1]</enabled></acpi3.0></last></disabled></disabled></enabled></legacy>		Disable/Set watchdog timer for system booting. If the system can not boot up successfully within the given timer value, watchdog timer will reset the system for anothing booting process.
WDT for Booting	<disabled></disabled>		
▶Legacy Boot Device		WDT for Booting Disabled 1 Hin. 3 Hin. 5 Hin. 10 Hin.	
F1 Help	1/↓ Select Item	F5/F6 Change Values	F9 Setup Defaults
Esc Exit	←/→ Select Item	Enter Select ► SubMenu	F10 Save and Exit

To set the watchdog timer for boot in BIOS:

- 1. When system boots up, press F2 to enter BIOS setup utility.
- 2. Go to **[Boot]** menu.
- 3. Disable or select timeout value for **[WDT for Booting]** option.

4. Once you give a timeout value, the **[WDT Stop Option]** option appears. You can select *"Automatically after POST"* or *"Manually after Entering OS"*.

		is-5306RT Series Setup Utility	Rev. 5.0
Main Advanced Security	Power Boot Exit		
Hain Advanced Security Boot Type Quick Boot Quiet Boot PXE Boot to LAN Add Boot Options ACPI Selection USB Boot Timeout WDT for Booting WDT stop Option >Legacy Boot Device	Power Boot Exit <pre></pre>	Boot Type> d> d> d> ed> D> d>	Rev. 5.1 Select when and how to to stop watchdog timer. If [Automatically after POST] is selected, watchdog timer is stopped automatically after BIOS POST. If [Manually after Entering OS] is selected, it's user's responsibility to stop watchdog timer after entering OS.
F1 Help Esc Exit	1/↓ Select Item +/→ Select Item	F5/F6 Change Values Enter Select ▶ SubMenu	F9 Setup Defaults F10 Save and Exit

5. Press F10 to "Exit Saving Changes.

4.1.10 Selecting Legacy/ UEFI Boot Device

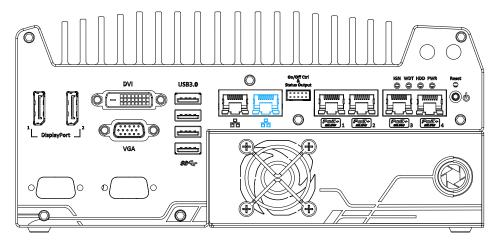
When multiple bootable devices are connected (e.g. HDD, mSATA, USB flash disk, USB DVD-drive), you may need to select one of them as the boot device. There are two ways to select the device. You can either, press F12 when system boots up to go to Boot Manager and then select one of the devices, or select the boot device in BIOS settings.

		5306RT Series Setup Utility	Rev. 5.1
	Boot		
Boot Device Priority			t the boot option by device type or device.
Boot Menu	<by device<="" td=""><td>></td><td></td></by>	>	
SanD i sk			
		Boot Menu By Device Type By Device	
F1 Help For Fxit	1/1 Select Item €/+ Select Item	F5/F6 Change Values	F9 Setup Defaults F10 Save and Exit

To set boot order for devices in UEFI Boot Device:

- 1. When system boots up, press F2 to enter BIOS setup utility
- 2. Go to [Boot] > [UEFI Boot Device]
- Highlight the device you wish to make boot order changes to and press F5/ F6 or +/ - to change device boot order.

To select boot order for devices in Legacy Boot Device:


- 1. When system boots up, press F2 to enter BIOS setup utility
- Go to [Boot] > [Legacy Boot Device], you can choose the type of device to boot list by selecting "By Device" or "By Device Type".
- Highlight the device or device category you wish to make boot order changes to and press F5/ F6 or +/ - to change device boot order.

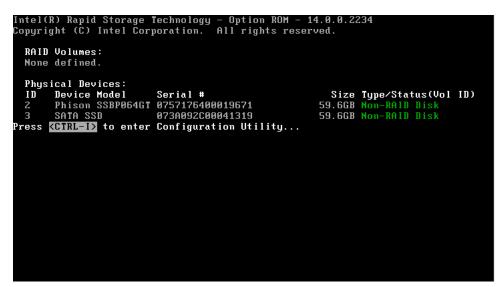
4.2 AMT Configuration

Intel® AMT (Active Management Technology) is a hardware-based technology for remotely managing target PCs via Ethernet connection. The system supports AMT function via its Ethernet port implemented with Intel I219-LM. Prior to using AMT to remotely control the system, you need to configure AMT password and network settings.

1. Make sure you have connected the proper Ethernet port (via I219-LM).

2. When the system boots up, press F10 to enter the MEBx configuration menu. Intel(R) Management Engine BIOS Extension v11.0.0.0005/Intel(R) ME v11.0.25.3001

	C) 2003-15 Intel Corporation.		
	MAIN MENU		
MEBx Login > Intel(R) ME General Settings > Intel(R) AMT Configuration MEBx Exit			
Intel(R) ME Password			
[↑↓]=Move Highlight	[Enter]=Select Entry	[Esc]=Exit	
Highlight MEBx Login and p	ress Enter a prompt will ar	pear asking for	


3. Highlight MEBx Login and press Enter, a prompt will appear asking for password. The default password is "admin". For further MEBx configuration details, please refer to Intel® MEBX User Guide.

4.3 RAID Volume Configuration

The system supports hardware RAID function for more reliable and efficient disk access. The built-in RAID supports RAID 0 (data stripping) and RAID 1 (data mirroring). You can configure RAID mode according to your needs by following steps listed below.

- Configure the SATA controller by going to [Advanced] > [SATA Configuration] > [SATA Mode Selection] and select [RAID] (refer to <u>SATA Configuration</u> for details).
- 2. Reboot the system once RAID mode has been set, upon reboot, you will see a UI banner for RAID configuration.

3. Press [Ctrl + I] to enter the RAID configuration menu. Follow the on-screen instructions to create, delete or configure the RAID volume.

	l Storage Technolo (C) Intel Corporat	ion. All rights		
	<mark>ID Volume</mark> ID Volume <s non-raid<="" td="" to=""><td>5. Accelerat 6. Exit</td><td>Volume Options tion Options</td><td></td></s>	5. Accelerat 6. Exit	Volume Options tion Options	
RAID Volumes: None defined.	E DISK/OULOME	INFORMATION]		
	Serial # 0757176400019671 073A092C00041319	59.6GB	Type∕Status(Vol Non-RAID Disk Non-RAID Disk	ID)
[↑↓]-Select	[ESC]-Exit	EENTEI	R]-Select Menu	

5 OS Support and Driver Installation

5.1 Operating System Compatibility

The system support most operating system developed for Intel® x86 architecture. The following list contains the operating systems which have been tested by Neousys Technology.

- Microsoft Window 7 (x86*/ x64*)
- Microsoft Window 8 (x64)
- Microsoft Window 10 (x64)
- Microsoft Embedded Standard 7
- CentOS 7
- Debian 8.7**
- Fedora 24**
- OpenSUSE 42.1**
- Ubuntu 14.04.4 LTS and 16.04 LTS**

NOTE

* Due to xHCl driver is not included natively in Windows 7, you may encounter Keyboard/ mouse issues when installing Windows 7. Neousys offers a Windows-based batch file and step-by-step installation guide.

** For distributions, graphics driver and RAID function may not be completely implemented in its kernel. You may encounter restrictions when using these features, such as triple independent display and RAID. For optimum operation, it is the users' responsibility to manually check for new drivers and upgrades!

Neousys may remove or update operating system compatibility without prior notice. Please contact us if your operating system of choice is not on the list.

5.2 Install Drivers Automatically

The system comes with a "Drivers & Utilities" DVD that offers "one-click" driver installation process. It automatically detects your Windows operating system and installs all necessary drivers for you system with a single click.

To install drivers automatically, please refer to the following procedures.

1. Insert the "Drivers & Utilities" DVD into a USB DVD-drive connect to your system. A setup utility launches and the following dialog appears.

 Click on "Automatic Driver Installation" and the setup utility will automatically detect your Windows operating system and install all necessary drivers. The installation process takes about 6~8 minutes depending on your Windows version. Once driver installation is done, the setup utility reboots your Windows and you may begin using your system.

5.3 Install Drivers Manually

You can also manually install each driver for the system. Please note when installing drivers manually, you need to install the drivers in the following sequence mentioned below.

5.3.1 For Windows 7 (x86)

The recommended driver installation sequence is

- 1. Chipset driver (x:\Driver_Pool\Chipset_10_APL\Win_ALL\SetupChipset.exe)
- 2. Graphics driver (x:\Driver_Pool\Graphics_SKL_APL\Win_7_32\Setup.exe)
- 3. Audio driver (x:\Driver_Pool\Audio_ALC262\Win_ALL_32\Setup.exe)
- LAN driver (x:\Driver_Pool\GbE_I210_I350\Win_ALL_32\APPS\PROSETDX\Win32\DxSet up.exe)
- 5. ME driver (x:\Driver_Pool\ME_10_Series\Win_ALL_AMT\SetupME.exe)

5.3.2 For Windows 7 (x64)

The recommended driver installation sequence is

- 1. Chipset driver (x:\Driver_Pool\Chipset_10_APL\Win_ALL\SetupChipset.exe)
- Graphics driver

 (x:\Driver_Pool\Graphics_SKL_APL\Win_7_8_10_APL_64\Setup.exe)
- 3. Audio driver (x:\Driver_Pool\Audio_ALC262\Win_ALL_64\Setup.exe)
- 4. LAN driver (x:\Driver_Pool\GbE_I210_I350\Win_ALL_64\APPS\PROSETDX\Winx64\DxS etup.exe)
- 5. TPM 2.0 driver (x:\Driver_Pool\TPM2\Win7_64\Windows6.1-KB2920188-v7-x64.msu)
- 6. ME driver (x:\Driver_Pool\ME_10_Series\Win_ALL_AMT\SetupME.exe)

5.3.3 For Windows 8 (x86)

The recommended driver installation sequence is

- 1. Chipset driver (x:\Driver_Pool\Chipset_10_APL\Win_ALL\SetupChipset.exe)
- 2. Audio driver (x:\Driver_Pool\Audio_ALC262\Win_ALL_32\Setup.exe)
- 3. LAN driver (x:\Driver_Pool\GbE_I210_I350\Win_ALL_32\APPS\PROSETDX\Win32\DxSet up.exe)
- 4. ME driver (x:\Driver_Pool\ME_10_Series\Win_ALL_AMT\SetupME.exe)

5.3.4 For Windows 8 (x64)

The recommended driver installation sequence is

- 1. Chipset driver (x:\Driver_Pool\Chipset_10_APL\Win_ALL\SetupChipset.exe)
- Graphics driver
 (x:\Driver_Pool\Graphics_SKL_APL\Win_7_8_10_APL_64\Setup.exe)
- 3. Audio driver (x:\Driver_Pool\Audio_ALC262\Win_ALL_64\Setup.exe)
- LAN driver

 (x:\Driver_Pool\GbE_I210_I350\Win_ALL_64\APPS\PROSETDX\Winx64\DxS etup.exe)
- 5. ME driver (x:\Driver_Pool\ME_10_Series\Win_ALL_AMT\SetupME.exe)

5.3.5 For Windows 10 (x32)

The recommended driver installation sequence is

- 1. Chipset driver (x:\Driver_Pool\Chipset_10_APL\Win_ALL\SetupChipset.exe)
- 2. Audio driver (x:\Driver_Pool\Audio_ALC262\Win_ALL_32\Setup.exe)
- LAN driver

 (x:\Driver_Pool\GbE_I210_I350\Win_ALL_32\APPS\PROSETDX\Win32\DxSet up.exe)
- 4. ME driver (x:\Driver_Pool\ME_10_Series\Win_ALL_AMT\SetupME.exe)

5.3.6 For Windows 10 (x64)

The recommended driver installation sequence is

- 1. Chipset driver (x:\Driver_Pool\Chipset_10_APL\Win_ALL\SetupChipset.exe)
- Graphics driver
 (x:\Driver_Pool\Graphics_SKL_APL\Win_7_8_10_APL_64\Setup.exe)
- 3. Audio driver (x:\Driver_Pool\Audio_ALC262\Win_ALL_64\Setup.exe)
- LAN driver
 (x:\Driver_Pool\GbE_I210_I350\Win_ALL_64\APPS\PROSETDX\Win10_x64\ DxSetup.exe)
- 5. ME driver (x:\Driver_Pool\ME_10_Series\Win_ALL_AMT\SetupME.exe)

5.4 Install WDT_DIO Driver Package

Neousys provides a driver package which contains function APIs for watchdog timer, digital I/ O, per-port PoE power on/off control and other platform-related functions. You should install the driver package (WDT_DIO_Setup.exe) in prior to use these functions.

Please install WDT_DIO_Setup_v2.2.8.4 or later versions for The system.

5.4.1 For Windows 7 (x86)

Please execute the driver setup program in the following directory.

x:\Driver_Pool\WDT_DIO\XP_Win7_8_32\WDT_DIO_Setup_v2.2.8.4.exe

5.4.2 For Windows 7/ 8/ 10 (x64)

Please execute the driver setup program in the following directory.

x:\Driver_Pool\WDT_DIO\Win7_8_64\WDT_DIO_Setup_v2.2.8.4(x64).exe

5.4.3 For Windows 7/ 8/ 10 (WOW64)

Please execute the driver setup program in the following directory.

x:\Driver_Pool\WDT_DIO\Win7_8_WOW64\WDT_DIO_Setup_v2.2.8.4(wow64).exe

Appendix A: Windows 7 Installation

xHCI Driver Support in Microsoft OS

Intel Skylake platform removed EHCI controller and supports USB 2.0 and USB 3.0 connectivity only through its xHCI controller. For **Windows 8/ 8.1** and **Windows10**, xHCI controller is natively supported. To install Windows 8/ 8.1/ 10, please follow the recommended installation procedure by Microsoft. However, **Windows 7** does not natively support xHCI thus the xHCI driver needs to be manually patched in order to support both USB storage device and USB keyboard/mouse during the OS installation process.

If you would like to install Windows 7, the simplest way is to create a USB thumb drive with Windows 7 installation files and Intel xHCI driver included. Please follow instructions in the following sections to install Windows 7 on your system.

Please refer to the following procedures to create an installation flash drive to aid in smooth installation of Windows 7.

User Provided Items For Windows Installation

Before we proceed with the creation of USB flash drive for installation, please make sure you have the following items.

- 1. Windows 7 original installation DVD
- 2. USB thumb drive with at least 4 GB capacity
- 3. Software utility to create ISO image from DVD, e.g.
 - ImgBurn (<u>http://www.imgburn.com</u>)
 - Nero (<u>http://www.nero.com</u>)
- 4. Software utility to create bootable USB drive from ISO file, e.g.
 - Microsoft Windows USB/DVD Download Tool

(https://www.microsoft.com/en-us/download/windows-usb-dvd-download-tool)

- ISO to USB (<u>http://www.isotousb.com</u>)
- 5. You should have at least 10 GB disk space on your local drive.

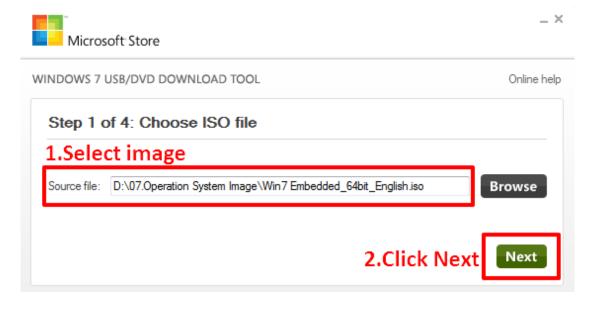
Creating Windows 7 Installation USB Flash Drive

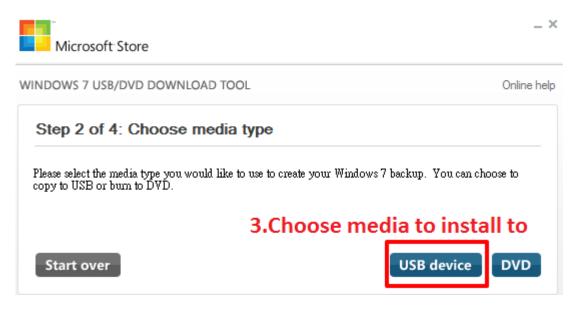
Once you have all the "user provided items", please follow the steps below to create a Windows 7 Installation USB flash drive.

Step 1 – Create .ISO File From Windows 7 DVD

The first step is to create a .iso file from the Windows 7 DVD. Here we use ImgBurn (<u>http://www.imgburn.com</u>) to create the .iso file and save it to local drive.

🥪 ImgBurn	
File View Mode Tools Help 1.Win7 insta	II CD/DVD
Source [1] [0:0:0] Slimtype eBAU108 5 L (F:)	Slimtype eBAU108 5 L 4L01 (USB)
Label: GSP1RMCPRXFREO_EN_DVD Imp ID: Microsoft CDIMAGE UDF File Sys: ISO9660 (Bootable), UDF (1.02) 2.Save Image destinatio	Status: Complete State of Last Session: Complete
Destination D:\\Win7 Embedded_64bit_English.iso	Size: 3,320,903,680 bytes Time: 360:22:35 (MM:SS:FF) MID: TVG03
Capacity: 252,865,532 KiB (241 GiB) Free Space: 185,009,088 KiB (176 GiB)	Supported Read Speeds: 3x, 4x, 6x, 8x Current Read Speed: 1.7x - 4x
	File System Information: Sectors: 1,621,535 🚽
3.Create Image	Settings Read Speed: MAX V / 8x V Add To Write Queue When Done Batch Mode
Ready	




Step 2 – Create USB Flash Drive Installer From .ISO

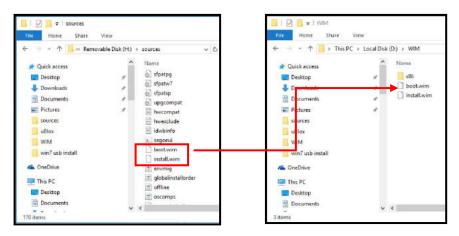
The next step is to create a bootable USB flash drive using the .iso file created in step 1. Here we use Microsoft Windows USB/DVD Download Tool to create the USB flash drive

(<u>https://www.microsoft.com/en-us/download/windows-usb-dvd-download-tool</u>). Please note that the content of USB flash drive will be destroyed.

- 1. Right-click on the 'Windows 7 USB DVD Download Tool' and select 'Run as administrator'.
- 2. Follow the instructions below to create the USB flash drive installer.

Nuvis-5306RT

Microsoft Store	_ >
VINDOWS 7 USB/DVD DOWNLOAD TOOL	Online help
Step 3 of 4: Insert USB device	(***=
If your device is not displayed click "Refresh." 4.Select USB device	e
E:\ (Removable Disk) - 14.6 GB Free 🔹	
Start over 5.Click Begin copying	Begin copying
Microsoft Store	- 1
INDOWS 7 USB/DVD DOWNLOAD TOOL	Online hel
Step 4 of 4: Creating bootable USB device	(***
6.Processing	95%
Status: Copying files	
	Cancel
Microsoft Store	_ ×
WINDOWS 7 USB/DVD DOWNLOAD TOOL	Online help
Bootable USB device created successfully	(***E
	100%
Status: Backup completed.	
Start over 7.Completed	


Step 3 – Create Folder and Copy Files For Patching Process

In this step, we need to create a working folder on your local drive and copy necessary files to it. Please follow the steps below.

- 1. Create a temporary working folder on your local drive. Here we use D:\WIM as an example.
- 2. Create another folder under D:\WIM for Intel xHCI driver files. Here we use \x86 for Win7 32-bit and \x64 for Win7 64-bit.
- 3. Copy xHCl driver files to the corresponding folder. You can find the driver files from Neousys Driver DVD.
 - For Win7 32-bit, copy all files from x:\Driver_Pool\USB3_10_Series\Win7_ALL\x86 to D:\WIM\x86
 - For Win7 64-bit, copy all files from x:\Driver_Pool\USB3_10_Series\Win7_ALL\x64 to D:\WIM\x64

(where x: denotes the drive of your DVD drive)

 Copy install.wim and boot.wim from \sources folder of your USB flash drive to D:\WIM.

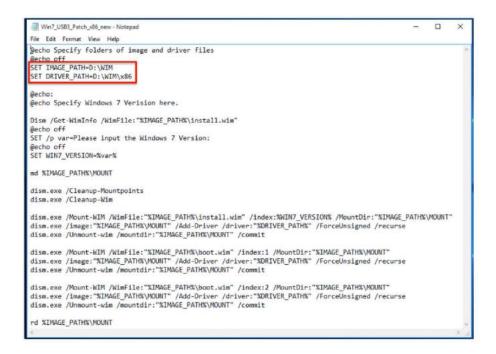
5. On the created USB drive, locate the folder

"x:\Driver_Pool\USB3_10_Series\Win7_ALL", copy the batch file

(Win7_USB3_Patch_x86.bat or Win7_USB3_Patch_x64.bat) to the working folder "D:\WIM".

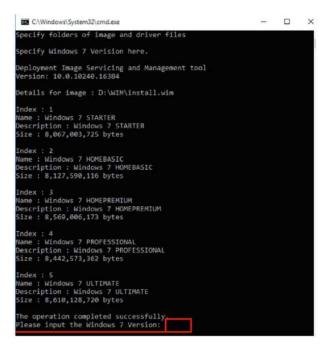
Step 4 – Execute .bat File to Patch .wim Files

To support xHCI for Windows 7 installation, both install.wim and boot.wim need to be patched to include xHCI driver files. Neousys offers Windows-based batch file (Win7_USB3_Patch_x86.bat for Windows 7 32-bit and


Win7_USB3_Patch_x64.bat for Windows 7 64-bit) to simplify this process.

1. Before executing the batch file, please make sure folders specified in the batch file are identical to your working folders.

SET IMAGE_PATH=D:\WIM


SET DRIVER_PATH=D:\WIM\x86

SET DRIVER_PATH=D:\WIM\x64

 Right click on the batch file, select "Run as administrator" and click on "Yes" to continue. A menu of various Windows 7 version options will appear, please enter the corresponding index number for your Windows 7 version and press Enter.

- 3. This will automatically patch both install.wim and boot.wim to include xHCI drivers. The patch process may take a few minutes to complete.
- 4. Once the patch process has finished, please copy the patched "install.wim" and "boot.wim" files from your local drive to the USB flash drives' \sources folder. A prompt may appear asking if you want to overwrite existing files, pleae click "Yes" and continue.

Home Share	View	<u>.</u>		~ 0	File Home Share	View	
🚽 👻 🕆 🧾 > This PC	C → Local Disk (D:) → WI		Gesrein WM		🚽 🛁 « Rer	movable Disk (H:) 🗧	sources
🖈 Quick access	^ Name	^	Date modified	Туре	📌 Quick access	^	Name
Desktop Downloads	x86	wim	1/7/2016 5:56 PM 1/7/2016 5:21 PM	File folder WIM File	Desktop	1. 	stpatw7
Documents	*	ll.wim	1/7/2016 6:10 PM	WIM File	Documents		sfpatep upgcompat
Sources	*				Pictures	1	hwcompat
uBlox					uBlax		idwbinfo
wim7 usb install					wini wini wini wini wini wini wini wini		boot.wim
OneDrive					a OneDrive		🖭 envmig
This PC					💻 This PC		globalinstallor
Desktop					Desktop		🚍 oscomps

Step 5 – Install Windows 7 Using USB Flash Drive Installer

Now you can use the USB flash drive to install Windows 7 on your system.

- 1. Plug the USB flash drive to USB port.
- 2. Power on the system and press F12 to select USB flash drive as boot device.
- 3. Follow regular installation process to install Windows 7 on your system. The xHCl driver is included in the newly-installed system.

ΝΟΤΕ

If it appears a warning message of "Setup was unable to create a new system partition or locate an existing system partition", please unplug and re-plug the USB flash drive, click 'Refresh' and try again.

	Name		Total Size	Free Space	Туре
	Disk 0 Unall	ocated Space	32.0 GB	32.0 GB	Offline
Disk 1 Unallocated Space		32.0 GB	32.0 GB	Offline	
a la	Disk 2 Unall	ocated Space	64.0 GB	64.0 GB	
		~	<i>A</i>		
	esh	<u>D</u> elete	<u>Format</u>	₩ New	

Appendix B: Using WDT & DIO

The watchdog timer (WDT) function ensures reliable system operation. The WDT is a hardware mechanism to reset the system if the watchdog timer expires. Users can start the WDT and keep resetting the timer to make sure the system or program is running. Otherwise, the system shall be reset.

In this section, we'll illustrate how to use the function library provided by Neousys to program WDT functions. Currently, WDT driver library supports Windows 7/ 8.1/ 10 32-bit and 64-bit versions. For other OS support, please contact Neousys Technology for further information.

Installing WDT_DIO Library

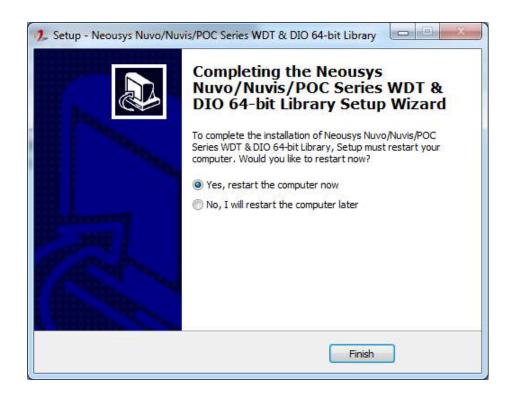
The WDT_DIO function library is delivered in the form of a setup package named **WDT_DIO_Setup.exe**. Prior to programming WDT, you should execute the setup program and install the WDT library. Please use the following WDT_DIO_Setup packages according to your operating system and application.

- For Windows 7/ 8.1/ 10 32-bit OS, please install WDT_DIO_Setup_v2.2.7.9.exe or later version.
- For Windows 7/ 8.1/ 10 64-bit OS with 64-bit application (x64 mode), please install WDT_DIO_Setup_v2.2.7.9(x64).exe or later version.
- For Windows 7/ 8.1/ 10 64-bit OS with 32-bit application (WOW64 mode), please install WDT_DIO_Setup_v2.2.7.9(wow64).exe or later version.

WDT and DIO Library Installation

To setup WDT & DIO Library, please follow instructions below.

1. Execute **WDT_DIO_Setup.2.2.7.9.exe**. and the following dialog appears.


🥠 Setup - Neousys Nuvo/Nu	vis/POC Series WDT & DIO 64-bit Library
	Welcome to the Neousys Nuvo/Nuvis/POC Series WDT & DIO 64-bit Library Setup Wizard
	This will install Neousys Nuvo/Nuvis/POC Series WDT & DIO 64-bit Library version Ver. 2.2.7 on your computer.
	It is recommended that you close all other applications before continuing.
	Click Next to continue, or Cancel to exit Setup.
Process of the second	
PACK .	
ALL STREET	
	Next > Cancel

 Click "Next >" and specify the directory of installing related files. The default directory is C:Weousys\WDT_DIO.

s/POC Series WDT & DIO 64-bit Library be
Nuvo/Nuvis/POC Series WDT & DIO 64-bit Library
Id like to select a different folder, click Browse.
Browse
e is required.

3. Once the installation has finished, a dialog will appear to prompt you to reboot the system. The WDT & DIO library will take effect after the system has rebooted.

4. When programming your WDT or DIO program, the related files are located in

Header File:	\Include
Library File:	\Lib
Function	\Manual
Reference:	
Sample Code:	\Sample\WDT_Demo (Demo for Watchdog Timer) \Sample\DIO_Demo (Demo for DIO Control) \Sample\COS_Demo (Demo for change-of-state DI) \Sample\CAN_Demo (Demo for CAN bus manipulation) \Sample\IGN_Demo (Demo for ignition status manipulation) \Sample\POE_Demo (Demo for PoE per-port on/off control)

 $\Box\Box$

WDT Function Reference

InitWDT

51		
Syntax	BOOL InitWDT(void);	
Description:	Initialize the WDT function. You should always invoke InitWDT() before set or start watchdog timer.	
Parameter	None	
Return Value	TRUE: Successfully initialized	
	FALSE: Failed to initialize	
Usage	BOOL bRet = InitWDT()	

SetWDT

Syntax	BOOL SetWDT(WORD tick, BYTE unit);			
Description	Set timeout value and unit for watchdog timer. When InitWDT() is invoked, a default timeout value of 255 seconds is assigned.			
-	tick			
Parameter	WORD value (1 ~ 65535) to indicate timeout ticks.			
	unit			
	BYTE value (0 or 1) to indicate unit of timeout ticks.			
	0 : unit is minute			
	1: unit is second			
Determ Males	If value of unit is correct (0 or 1), this function returns TRUE,			
Return Value	otherwise FALSE.			
	WORD tick=255;			
Usage	BYTE unit=1; //unit is second.			
	BOOL bRet = SetWDT(tick, unit); //timeout value is 255			
	seconds			

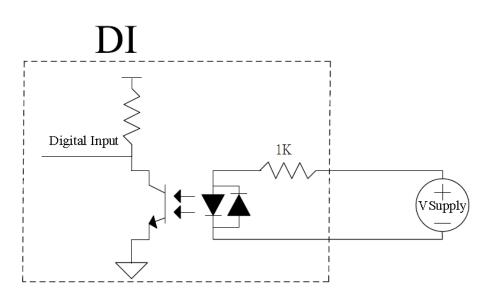
StartWDT

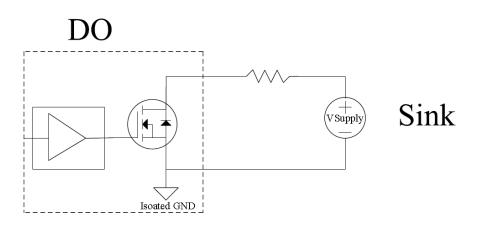
Syntax	BOOL StartWDT(void);	
Description	Starts WDT countdown. Once started, the WDT LED indicator will begin blinking. If ResetWDT() or StopWDT is not invoked before WDT countdowns to 0, the WDT expires and the system resets.	
Parameter	None	
Return Value	If the timeout value is given in correct format (WDT started), this function returns TRUE, otherwise FALSE	
Usage	BOOL bRet = StartWDT()	

ResetWDT

Syntax	BOOL ResetWDT(void);	
Description	Reset the timeout value to the value given by SetWDT().If ResetWDT() or StopWDT is not invoked before WDT countdowns to 0, the WDT expires and the system resets.	
Parameter	None	
Return Value	Always returns TRUE	
Usage	BOOL bRet = ResetWDT()	

StopWDT


	Syntax	BOOL StopWDT(void);
	Description	Stops the countdown of WDT. When WDT has stopped, the WDT LED indicator stops blinking.
	Parameter	None
	Return Value	Always returns TRUE
	Usage	BOOL bRet = StopWDT()


Using DIO Function

Wiring for DIO

The digital input function of System series is implemented using a photo-coupler with a internally series-connected $1k\Omega$ resistor. You need to provide a voltage to specify the logic high/low state. The input voltage for logic high is 5~24V, and the input voltage for logic low is 0~1.5V.

The digital output function of System series is implemented using Power MOSFET + Analog Device iCoupler® component. The DO channels are configured as NO (normally-open) configuration. When you turn on system, all DO channels have a deterministic state of logic 0 (circuit disconnected from GND return). When logic 1 is specified, MOSFET is activated and GND return path is established. The digital output function on System series supports sinking current connection. The following diagrams are the suggested wiring for DO:

DIO Pin Definition

(13 1)	
_		-
		•
	25 14	

Pin No.	Definition	I/O	Description
1	ISO_DI3H	I	Digital input channel 3
2	ISO_DI2H	I	Digital input channel 2
3	ISO_DI1H	I	Digital input channel 1
4	ISO_DI0H	I	Digital input channel 0
5	Reserved	-	Reserved pin. Keep unconnected
6	Reserved	-	Reserved pin. Keep unconnected
7	ISO_DO3	0	Digital output channel 3
8	ISO_DO2	0	Digital output channel 2
9	ISO_DO1	0	Digital output channel 1
10	ISO_DO0	0	Digital output channel 0
11	VDD	-	DO voltage source input for inductive load
12	ISO5V	-	Isolated 5V power supply
13	Reserved	-	Reserved pin. Keep unconnected
14	ISO_DI3L	-	Digital input channel 3 GND
15	ISO_DI2L	-	Digital input channel 2 GND
16	ISO_DI1L	-	Digital input channel 1 GND
17	ISO_DI0L	-	Digital input channel 0 GND
18	Reserved	-	Reserved pin. Keep unconnected
19	Reserved	-	Reserved pin. Keep unconnected
20	DOGND	-	Digital output GND
21	DOGND	-	Digital output GND
22	DOGND	-	Digital output GND
23	DOGND	-	Digital output GND
24	DOGND	-	Digital output GND
25	DOGND	-	Digital output GND

DIO Function Reference

InitDIO

Syntax	BOOL InitDIO(void);
Description:	Initialize the DIO function. You should always invoke InitDIO()
	before write/read any DIO port/channel.
Parameter	None
Return Value	TRUE: Successfully initialized
	FALSE: Failed to initialize
Usage	BOOL bRet = InitWDT()

DIReadLine

Syntax	BOOL DIReadLine(BYTE ch);
Description:	Read a single channel of isolated digital input.
Parameter	ch
	BYTE value specifies the DI channel to be read.
	<i>ch</i> should be a value of $0 \sim 3$.
Return Value	The status (TRUE or FALSE) of the specified DI channel.
Usage	BYTE ch=3; //DI channel #3
	BOOL DIChValue = DIReadLine(ch); //read DI channel #3

DIReadPort

Syntax	WORD DIReadPort(void);
Description:	Read the entire isolated digital input port (4 channels).
Parameter	None
Return Value	The status (TRUE or FALSE) of the specified DI channel.
Usage	WORD DIPortValue = DIReadPort ();

DOWriteLine	
--------------------	--

Syntax	void DOWriteLine(BYTE ch, BOOL value);
Description:	Write a single channel of isolated digital output.
	ch
	BYTE value specifies the DO channel to be written.
Denemoter	<i>ch</i> should be a value of $0 \sim 3$.
Parameter	value
	BOOL value (TRUE or FALSE) specifies the status of DO
	channel.
Return Value	None
	BYTE ch=3; //DI channel #3
Usens	BOOL DOChValue=TRUE;
Usage	DOWriteLine(ch, DOChValue); //write DO channel #3 as
	TRUE

DOWritePort

Syntax	void DOWritePort(WORD value);
Description:	Write the entire isolated digital output port (4 channels).
Parameter	<i>value</i> WORD value specifies the status of the DO port. <i>value</i> should be a value of 0~15.
Return Value	None
Usage	WORDDOPortValue=0x0C; //1100bDOWritePort(DOPortValue); //write DO port as 1100b

Syntax	void DOWriteLineChecked(BYTE ch, BOOL value);
	Write a single channel of isolated digital output and read-back
Description	the value of DO register. Note that this function is not returned
Description:	until the DO register is checked and identical to the written
	value.
	ch
	BYTE value specifies the DO channel to be written.
Parameter	<i>ch</i> should be a value of $0 \sim 3$.
Parameter	value
	BOOL value (TRUE or FALSE) specifies the status of DO
	channel.
Return Value	None
	BYTE ch=3; //DI channel #3
lleese	BOOL DOChValue=TRUE;
Usage	DOWriteLineChecked(ch, DOChValue); //write DO channel #3
	as TRUE

DOWriteLineChecked

DOWritePortChecked

Syntax	void DOWritePortChecked(WORD value);
	Write the entire isolated digital output port (8 channels) and
Description	check it has been done. Note that this function is not returned
Description:	until the write value has been checked the same with the
	device registry.
	value
Parameter	WORD value specifies the status of the DO port.
	<i>value</i> should be a value of 0~15.
Return Value	None
	WORD DOPortValue=0x0C; //1100b
Usage	DOWritePortChecked(DOPortValue); //write DO port as 1100b

COS Function Reference

SetupDICOS

DICOS	
Syntax	BOOL SetupDICOS(COS_INT_SETUP *lpSetup, DWORD
	cbSetup);
Description	Setup Digital-Input(DI) Change-of-State(COS) interrupt
	parameters.
Parameter	<i>lpSetup</i> [in]
	A pointer to a COS_INT_SETUP structure that contains the
	COS configuration information for the DI device.
	This data structure contains the following variables:
	portMask
	WORD value specifies the interrupt mask for corresponding
	channel(s).
	edgeMode
	WORD value specifies that interrupt is generated when level
	change (set to 0) or on rising/falling edge (set to 1) for the
	corresponding channel(s).
	edgeType
	WORD value specifies that interrupt is generated on rising
	edge (set to 0) or falling (set to 1) edge for corresponding
	channel(s). This value is neglected if <i>edgeMode</i> is set to 0 for
	the corresponding channel(s).
	cbSetup [in]
	The length of the structure, in bytes. The caller must set this
	member to size of (COS_INT_SETUP).
Return Value	TRUE if setup successes
	FALSE if setup failed
Usage	COS_INT_SETUP setup;
	memset(&setup, 0, sizeof(setup));
	setup.portMask = 0x0f; // enable ch.0~3
	setup.edgeMode = 0; // level
	setup.edgeType = 0x00; // Lo/Hi
	BOOL bRet = SetupDICOS(&setup, sizeof(setup));

RegisterCallbackDICOS

Syntax	BOOL RegisterCallbackDICOS(COS_INT_CALLBACK
	callback);
Description:	Registers a callback function, which is called when the DICOS
	interrupt occurred.
Parameter	callback [in]
	Specifies the callback function. The prototype for this function
	is descripted as follow.
	voidstdcall callback_func(COS_INT_CALLBACK_ARG*
	arg);
Return Value	TRUE if setup successes,
Return Value	TRUE if setup successes, FALSE if setup failed.
Return Value Usage	
	FALSE if setup failed.
	FALSE if setup failed. voidstdcall callback_func(COS_INT_CALLBACK_ARG*
	FALSE if setup failed. voidstdcall callback_func(COS_INT_CALLBACK_ARG* arg)
	FALSE if setup failed. voidstdcall callback_func(COS_INT_CALLBACK_ARG* arg) {
	FALSE if setup failed. voidstdcall callback_func(COS_INT_CALLBACK_ARG* arg) { printf("data=0x%02x, flag=0x%02x, seq=%02d\n",

StartDICOS

Syntax	BOOL StartDICOS(void);
Description	Start DI Change-of-State interrupt
Parameter	None
Return Value	TRUE if start procedure successes
	FALSE if start procedure failed
Usage	BOOL bRet = StartDICOS();

StopDICOS

Syntax	BOOL StopDICOS(void);					
Description	Stop DI Change-of-State interrupt					
Parameter	None					
Return Value	TRUE if stop procedure successes					
	FALSE if stop procedure failed					
Usage	BOOL bRet = StopDICOS();					

DI COS Example

```
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include "WDT_DIO.h"
```

```
//Step 0,
            define a Change-of-State Interrupt callback function
void __stdcall callback_function(COS_INT_CALLBACK_ARG* arg)
{
    printf("data=0x%02x, flag=0x%02x, seq=%02d\n",
    arg->portData, arg->intrFlag, arg->intrSeq);
}
int main(int argc, char* argv[])
{
 //Step 1, initialize DIO library by invoking InitDIO()
    if (! InitDIO())
    {
         printf("InitDIO --> FAILED\n");
         return -1;
    }
    printf("InitDIO --> PASSED\n");
```

```
//Step 2, setup Change-of-State Interrupt mask and level/edge mode
COS_INT_SETUP setup;
```

```
memset(&setup, 0, sizeof(setup));
    setup.portMask = 0x0f;
                                 // 00001111b, enable ch.0~3
    setup.edgeMode = 0x00; // generate interrupt on level change
    setup.edgeType = 0x00;
                                 // rising/falling edge, only effective when
edgeMode = 1
    if (! SetupDICOS(&setup, sizeof(setup)))
    {
        printf("SetupDICOS --> FAILED\n");
        return -2;
    }
    printf("SetupDICOS --> PASSED\n");
 //Step 3, register the callback function
    if (! RegisterCallbackDICOS(callback_function))
    {
        printf("RegisterCallbackDICOS --> FAILED\n");
        return -3;
    }
    printf("RegisterCallbackDICOS --> PASSED\n");
 //Step 4, start the DI Change-of-State Interrupt
    if (! StartDICOS())
    {
        printf("StartDICOS --> FAILED\n");
        return -4;
    }
    printf("StartDICOS --> PASSED\n");
    printf("\npress any key to stop...\n");
    system("pause >nul");
 //Step 5, stop the DI Change-of-State Interrupt operation
    if (! StopDICOS())
    {
        printf("StopDICOS --> FAILED\n");
```

```
return -5;

}

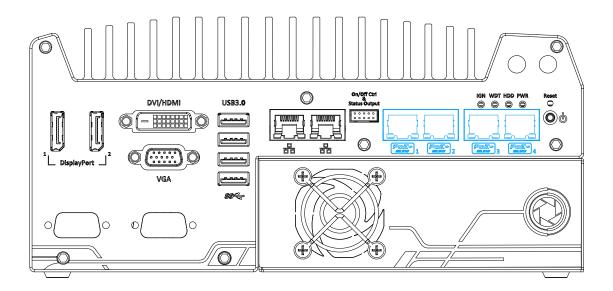
printf("StopDICOS --> PASSED\n");

printf("\npress any key to exit...\n");

system("pause >nul");

return 0;
```

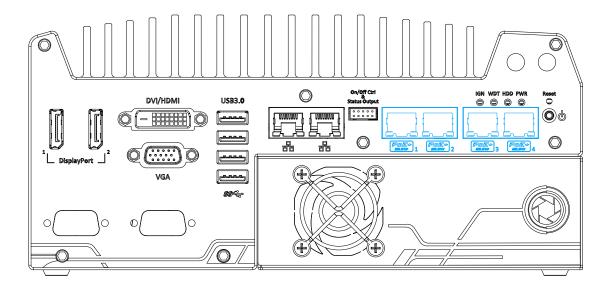
}


Appendix C: PoE On/ Off Control

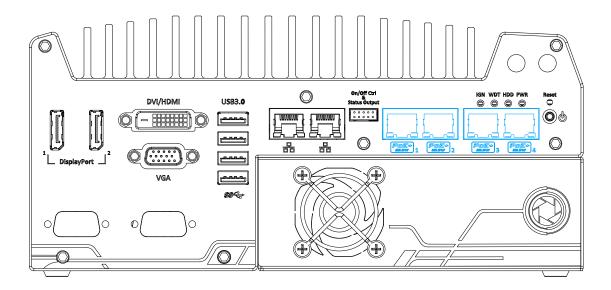
The system offers 802.3at PoE+ ports with a unique feature to allow users manually turn on or off the power supply of each PoE port. This can be function can be useful in power device (PD) fault-recovery or power reset.

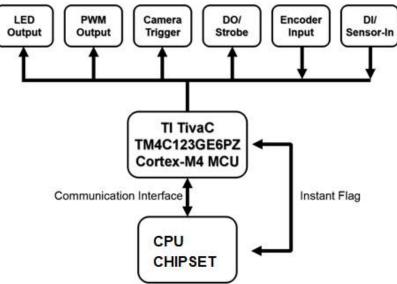
The function APIs are encapsulated in Neousys WDT_DIO driver package. Please follow the instructions in <u>Appendix B Watchdog Timer & Isolated DIO</u> to install the driver package prior to programming PoE on/off control function.

GetStatusPoEPort

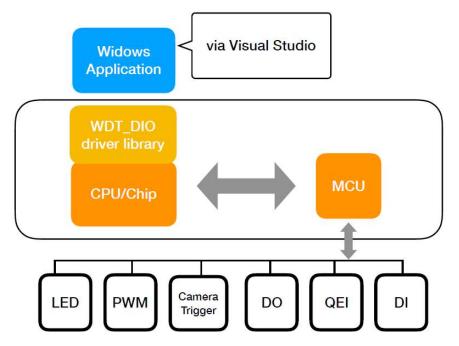

Syntax	BYTE GetStatusPoEPort (Byte port);
Description	Get current on/off status of designated PoE port.
Parameter	port
	BYTE value specifies the index of PoE port. Please refer to the
	following illustration, <i>port</i> should be a value of $3 \sim 6$.
Return Value	BYTE value indicating PoE on/off status
	0 if port is disabled (off)
_	1 if port is enabled (on)
Usage	BYTE bEnabled = GetStatusPoEPort (3); //Get on/off status of
	PoE Port#3

EnablePoEPort


BOOL EnablePoEPort (BYTE port);							
Turn on PoE power of designated PoE port.							
port							
BYTE value specifies the index of PoE port. Please refer to the							
following illustration, <i>port</i> should be a value of $3 \sim 6$.							
TRUE if enabled success							
FALSE if fail to enable.							
BOOL bRet = EnablePoEPort (3); //Turn on PoE Port#3							


DisablePoEPort

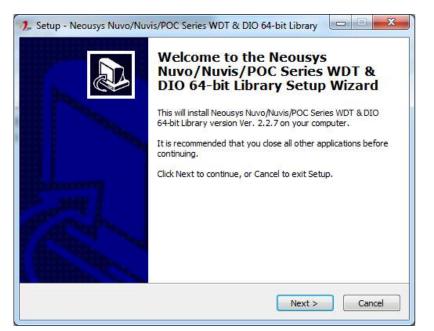
Syntax	ntax BOOL DisablePoEPort (BYTE port);								
Description	Turn off PoE power of designated PoE port								
Parameter	port								
	BYTE value specifies the index of PoE port. Please refer to the								
	following illustration, <i>port</i> should be a value of $3 \sim 6$								
Return Value	TRUE if disabled success								
	FALSE if fail to disable								
Usage	BOOL bRet = DisablePoEPort (3); //Turn off PoE Port#3								



Appendix D: DTIOv2 Programming Guide

Nuvis-5306RT is a state-of-the-art vision controller featuring I/O functions designed for machine vision applications, including LED lighting control, camera trigger, QEI input, PWM output and isolated DIO. To allow comprehensive control of MCU, Neousys designs two versions of Nuvis-5306RT. The one is NuMCU version and the other one is DTIOv2 version. This document is prepared for DTIOv2 version.

In DTIOv2 version, users don't need to understand MCU and can develop windows application based on WDT_DIO driver library to control the machine vision system. It is easier to control vision I/O. I will introduce more in the following paragraphs.

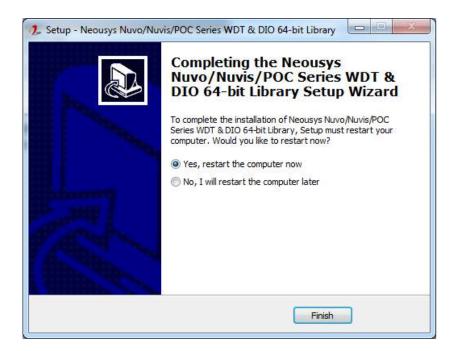


Programming Under Windows Environment

We provide DTIOv2 library so users can program under windows environment easily. Users should setup environment before starting programming.

Step 1. WDT_DIO Library Installation

Please download the WDT_DIO_Setup_v2.2.7.9 or later version of WDT_DIO library from our website and install it. Please follow the steps below to complete the installation.


Choose the directory you wish to install WDT_DIO library to.

	STATION AND INTERPORT OF THE REACT AND A COMPACT OF THE PARTY OF THE
Where should Neousys Nuvo/Nu installed?	luvis/POC Series WDT & DIO 64-bit Library be
into the following folde	
C:Weousys/WDT_DIO(x64)	would like to select a different folder, click Browse.

Ready to Install Setup is now ready to begin installing	Neousys Nuvo/Nuvis/POC Series WDT &
DIO 64-bit Library on your computer.	
Click Install to continue with the instal change any settings.	llation, or click Back if you want to review or
Destination location: C:\Neousys\WDT_DIO(x64)	*

Restart the computer to complete the installation.

Step 2. Install Integrated Development Environment (IDE)

Choose your preferred integrated development environment (IDE) to install. For demonstration, we will be using Visual Studio 2017 to compile our sample code.

Start Page - Moreseft Visual Rodio (m) Left greet project (pring) look Test Applyie (print (m) Left greet print	Kow Epile			²¹ Quick Laurich (Out-Q)	P = O × demozită • 🚺
Backbaye ≥ 3 Get S Were be vanish Sector analytic Sector anal	itarted before the analysis of any program and months inspired and any program and more all below the ran program and any all below the constrained and the second any second any second and the second any second any second any second and the second any s	Open Cartorial constraints analoss contraint gatese es ques terretiming en you terretiming. Cartorial constraints analoss contraint gatese es ques terretiming. Outer Cartorial Constraints Outer Constraints analoss contraint gatese es ques terretiming. Outer Constraints analoss contraint gatese es ques terretiming. Outer Constraints Outer Constraints analoss contraint gatese es ques terretiming. Outer Constraints analoss terretiming. Outer Constraint Applications Outer Constraint Applications			*ix
(Dorgant Selene conjust Koper) Analy	s. s.[≝]α.				- 48

Step 3: Startup Visual Studio

Startup Visual Studio and open the file "5306RTDemo" in the supplied sample code.

Name	Date modified	Туре		
		13bc	Size	
🍌 5306RTDemo	2017/10/12 上午1	File folder		
📕 Debug	2017/8/31 上午 04:	File folder		
퉲 ipch	2017/10/12 上午1	File folder		
🍶 хб4	2017/10/12 上午1	File folder		
5306RTDemo.sdf	2017/9/18 下午 08:	SDF File	28,096 K	
5306RTDemo	2017/8/9 上午 05:57	Microsoft Visual S	2 K	
Type: Versio	Microsoft Visual Studio Solution on: Visual Studio Express 2012 for Window	s Desktop		
	ipch ipch 5306RTDemo.sdf 5306RTDemo Size: 1 Type: Versic	ipch 2017/10/12 上午 1 ↓ x64 2017/10/12 上午 1 5306RTDemo.sdf 2017/9/18 下午 08: 5306RTDemo 2017/8/9 上午 05:57 Size: 1.24 KB Type: Microsoft Visual Studio Solution	ipch 2017/10/12 上午 1 File folder x64 2017/10/12 上午 1 File folder 5306RTDemo.sdf 2017/9/18 下午 08: SDF File 5306RTDemo 2017/8/9 上午 05:57 Microsoft Visual S Size: 1.24 KB Type: Microsoft Visual Studio Solution Version: Visual Studio Express 2012 for Windows Desktop	

Step 4: Execute 5306RTDemo.cpp file

A "Solution Explorer" window should appear on the right and click on "5306RTDemo.cpp".

Step 5: Build Solution

Go to "Build > Build Solution".

330	6RTDer	no - N	/licrosoft	Visual	Studio										
File Edi	it Vie	ew	Project	Buil	d Debug Tea	n Tools	Test	Analyze	Window	н	elp				
G - (o te		a 🖬 🗗	*	Build Solution			, í	Ctrl+Shift+		ebugger + Auto)	- 🏓 -) b († 13	2⊴ 📕
		_			Rebuild Solution										
NV5306.h		5306	RTDemo.		Clean Solution						ontrol.cpp	PositionTrigg	ger.cpp	PWMContr	ol.cpp
🔄 5306RT	Demo										ilobal Scope)				
1			306RTDen		Build full program			lution			ion.				
2		//			Run Code Analysis	on Solution	n		Alt+F11						
3		#incl	lude "st	*	Build 5306RTDemo)									
5			Lude"Den		Rebuild 5306RTDe	no									
6	L				Clean 5306RTDem	n									
7															
8			test()		Project Only					•					
9	. 1	[Batch Build										
10			orintf(" return 0		Configuration Ma	nager									
11	•		ecurn e	a	Compile	-			Ctrl+F7						
13	L	,		Th	Complie				Cui+F/		_				
14	Ξ	int _	tmain(i	.nt a	rgc, _TCHAR* ar	gv[])									
15	ł	(
16		i	int leav	eFla	g = 0;										
17															
18 19	Ē		vhile(1)												
20		1		mode	= 0;										
21					Please select m	ode\n \n'	');								
22				tf("	0 :Leave \n"										
23					1 :LEDControl \										
24					2 :PWMControl \										
25					3 :TimeBasedDT2 4 :QEIEncoderRe										
26					5 :DT2PositionT										
28					<pre>6 :SoftwareTrig</pre>										
29					7 :BufferTrigge										
30					8 :QEIGetDirect										
31					9 :externalInpu										
32					10:triggerOutAs	Source\n"	');								
33															
34					"%d",&mode); mode = %d \n",	mode).									
36			bi Tu		moure = you (ff ;	moue),									

Step 6: Execute Local Windows Debugger

Click on "Local Windows Debugger"

	Release - x64		Local Windows Debugger	- Auto - p		I %I %I %I 📮 👘
IV5305.h S306RTDemo.cpp ⊨ × Bu	fferTnggerTest.cpp	ExternalInpu	t.cpp LEDControl.cp	p PositionTrigger.cpp	PWMControl.cpp.	QEIEncoder.cpp
5306RTDemo			- (Global Sco	pe)	100	
1 ⊟// 53868TDemo.cpp : Def 2 [// 3 ⊟#include "stdafx.h"	ines the entry poi	nt for th <mark>e</mark> c	onsole application.			
5 [#include"Demo.h" 6 7						
8 ⊟int test() 9 {						
10 printf("In testing	zone \n");					
11 return 0;						
13						
14 Bint tmain(int args, T	(HAR* angv[])					
15 {	0.0.11					
<pre>16 int leaveFlag = 0;</pre>						
17						
18 🗄 while(1)						
19 {						
20 int mode - 0;						
21 printf("Please	select mode\n \n")	3				
22 printf("0 :Leav						
	ontrol \n"					
	ontrol \n"					
	BasedDT2 \n"					
	ncoderRead \n"					
	ositionTrigger\n"					
	wareTriggerDT2\n*					
	erTriggerDT2\n"					
	etDirection\n"					
	rnalInputOT2\n*					
	<pre>gerOutAsSource\n")</pre>	3				
33	12121					
34 scanf_s("%d",&m						
<pre>35 printf("mode = "</pre>	%d \n", mode);					

Step 7: Pre-configured Solution

There are 10 sample programs in the pre-configured solution. You can choose the solution you wish to access by entering the number designation.

C:\Users\6108A1\Desktop\5306RTDemo_Sample Code\x64\Release\5306	RTDemo.exe	
Please select mode		-
0 :Leave		E
1 :LEDControl		
2 :PWMControl		
3 :TimeBasedDT2		
4 :QEIEncoderRead		
5 :DT2PositionTrigger		
6 :SoftwareTriggerDT2		
7 :BufferTriggerDT2		
8 :QEIGetDirection		
9 :externalInputDT2		
10:triggerOutAsSource		
5_		
		-
the second second second		

Nuvis-5306RT Vision-Specific I/O: TB-10 Pin

Assignment

Signal		ISO5V				ISOGND	PHA	PHB	ISOGND	DI4L	DI4H	DI5L	DI5H	DI6L	DI6H	DI7L	DI7H
Pin	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68
Pin	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Signal		DOGND				ISOGND	IDX			DIOL	DI0H	DI1L	DI1H	DI2L	DI2H	DI3L	DI3H
	•																
Signal	LED0+	LED0-	LED1+	LED1-	DOGND	DO0	DOGND	DO1	DOGND	DO2	DOGND	DO3	VDD	DOGND	TRIG0	DOGND	TRIG1
Signal Pin	LED0+ 1	LED0- 2	LED1+ 3	LED1- 4	DOGND 5	DO0 6	DOGND 7	DO1 8	DOGND 9	DO2 10	DOGND 11	DO3 12	VDD 13	DOGND 14	TRIG0 15	DOGND 16	TRIG1 17
	LED0+ 1 35	-	LED1+ 3 37	LED1- 4 38	DOGND 5 39	DO0 6 40	DOGND 7 41	DO1 8 42									

Vision-Specific I/O Function Description

E LED lights in the vision red to output 24V constant 2A constant current to drive or NuMCU library. The LED nming control by adjusting necting LED lights, wire LED- to negative polarity
red to output 24V constant 2A constant current to drive or NuMCU library. The LED nming control by adjusting necting LED lights, wire
2A constant current to drive or NuMCU library. The LED nming control by adjusting necting LED lights, wire
or NuMCU library. The LED nming control by adjusting necting LED lights, wire
nming control by adjusting necting LED lights, wire
nming control by adjusting necting LED lights, wire
necting LED lights, wire
LED- to negative polarity
5 1 5
nels is limited to 80W. Users shall
ke sure all connected LED lights
5
t)
nels designed to control
ay, valve and motor. Each
ited current.
or PWM output
nels implemented using
ropagation delay and is ideal
s. Users can also configures
TIO or NuMCU to generate
required). Each channel
urrent.
put channels that offer
sers can simply wire TRIGx
ND directly without the need
nel can offer maximal 50mA
delay.
or digital input. Each channel
all wire DI signal to DIxH and
n input voltage is 0~1.5V and
/.

DI5H/DI5L				
DI6H/DI6L				
DI7H/DI7L				
	Quadratu	re encoder input		
	PHA, PHB	and IDX are pins for c	juadrature e	encoder input. It
	support eit	her single-ended enco	der or diffe	rential encoder by
	jumper sel	ection. Please refer to	the followir	ng table for correctly
	wire your o	quadrature encoder.		
	Sing	le-ended encoder	Diffe	erential encoder
	Pin#	Wire to encoder's	Pin#	Wire to encoder's
PHA	57	GND	57	A-
PHB	58	А	58	A+
IDX	59	В	59	B+
ISOGND	60	GND	60	B-
	23	GND	23	Z-
	24	Z	24	Z+

Programming with DTIOv2

Library

Neousys' DTIO technology offers a simple way to program real-time I/O operations with WDT_DIO library. Users can write and run C++ program based on our APIs under windows environment. It will shorten the developing time compared with programming MCU. In this document, we will introduce the concept of DTIOv2 and demonstrate some sample programs to help users easier to use Nuvis-5306RT.

LED Brightness

Users need not purchase additional LED controllers to turn on/ off LEDs as LED drivers are included in our product.

Adjust the Brightness of LED

An API is provided for users to access the LED controller. There are three LED modes to indicate different statuses.

Mode	Description
Constant current (CC)	User can adjust the brightness of LED by changing the
	constant current intensity. The unit of this variable is mA. The
	max output current is 2000 mA.
Constant voltage (CV)	We provide constant 24V in this mode and adjust the
	brightness of LED by modifying duty cycle.
Constant current with	User can adjust the brightness of LED by changing the
duty cycle (CD)	constant current intensity and modifying duty cycle at the
	same time.

LED Function Reference

LED_SetCurrentDriving

Syntax	BOOLcdecl LED_SetCurr	entDriving(DWORD mode, DWORD					
	data);						
Description	Adjust the brightness of each	LED channel					
Parameter	mode [in]						
	The LED mode is based on a 32 bits parameter. From 16 th to 19 th bit						
	are used to assign LED channel. If the 16 th bit is set as 1, LED 0 will						
	be configured. If the 17 th bit is set as 1, LED1 will be configured, and						
	so on.						
	The second half of 32 bits pa	rameter is used to configure mode.					
	There are 4 LED brightness r	nodes.					
	Mode	Value					
	disabled	0x00					
	constant current	0x01					
	constant voltage	0x02					
	constant current with duty 0x03						
	cycle						
	data [in]						
	data [in]						
		LED. The meaning of data is different in					
		LED. The meaning of data is different in					
	Specifies the value to driving	LED. The meaning of data is different in					
	Specifies the value to driving different mode.						
	Specifies the value to driving different mode.	Unit					
	Specifies the value to driving different mode. Mode constant current	Unit mA					
	Specifies the value to driving different mode. Mode constant current constant voltage constant current with duty cycle	Unit mA Percentage of duty cycle 31~16bits: mA 15 ~0 bits: Percentage of duty cycle					
Return	Specifies the value to driving different mode. Mode constant current constant voltage constant current with duty cycle	Unit mA Percentage of duty cycle 31~16bits: mA					
Return Value	Specifies the value to driving different mode. Mode constant current constant voltage constant current with duty cycle Returns TRUE if operation su	Unit mA Percentage of duty cycle 31~16bits: mA 15 ~0 bits: Percentage of duty cycle uccessful, FALSE if operation failed.					
	Specifies the value to driving different mode. Mode constant current constant voltage constant current with duty cycle Returns TRUE if operation su	Unit mA Percentage of duty cycle 31~16bits: mA 15 ~0 bits: Percentage of duty cycle uccessful, FALSE if operation failed.					
Value	Specifies the value to driving different mode. Mode constant current constant voltage constant current with duty cycle Returns TRUE if operation su DWORD pins = (0x00010000 DWORD mode = (pins) 0x0	Unit mA Percentage of duty cycle 31~16bits: mA 15 ~0 bits: Percentage of duty cycle accessful, FALSE if operation failed.					
Value	Specifies the value to driving different mode. Mode constant current constant voltage constant current with duty cycle Returns TRUE if operation su	Unit mA Percentage of duty cycle 31~16bits: mA 15 ~0 bits: Percentage of duty cycle accessful, FALSE if operation failed.					
Value	Specifies the value to driving different mode. Mode constant current constant voltage constant current with duty cycle Returns TRUE if operation su DWORD pins = (0x00010000 DWORD mode = (pins) 0x0 if (LED_SetCurrentDriving(m {	Unit mA Percentage of duty cycle 31~16bits: 31~16bits: mA 15~0 bits: Percentage of duty cycle uccessful, FALSE if operation failed. mode, 100) == false)					
Value	Specifies the value to driving different mode. Mode constant current constant voltage constant current with duty cycle Returns TRUE if operation su DWORD pins = (0x00010000 DWORD mode = (pins) 0x0 if (LED_SetCurrentDriving(m { printf("Setting LEE	Unit mA Percentage of duty cycle 31~16bits: 31~16bits: mA 15~0 bits: Percentage of duty cycle uccessful, FALSE if operation failed. mode, 100) == false)					
Value	Specifies the value to driving different mode. Mode constant current constant voltage constant current with duty cycle Returns TRUE if operation su DWORD pins = (0x00010000 DWORD mode = (pins) 0x0 if (LED_SetCurrentDriving(m {	Unit mA Percentage of duty cycle 31~16bits: 31~16bits: mA 15~0 bits: Percentage of duty cycle uccessful, FALSE if operation failed. mode, 100) == false)					

LED Example -- Turn On and Off LED

Below is an example on how to turn on and off LED. In the demonstration, the program will turn on LED0 for 10 seconds and then turn off the LED0.

```
int LEDControl ()
{
```

//Set to config LED0
DWORD pins = (0x00010000)<< 0;
//Set LED Mode as constant current
DWORD mode = (pins) | LED_MODE_CC;</pre>

```
// Set constant current as 100 mA. It means that LED is turned on.
if (LED_SetCurrentDriving(mode,100) == false)
{
    printf("Setting LED failed \n");
```

return 0;

}

Sleep(10000);

```
// Set constant current as 0 mA. It means that LED is turned off .
if (LED_SetCurrentDriving(LED_DISABLE,0) == false)
{
    printf("Setting LED failed \n");
    return 0;
}
return 0;
```

}

Quadrature Encoder Interface (QEI)

The Concept of QEI

A Quadrature Encoder is known as a 2-channel incremental encoder. It converts linear /rotation displacement into a pulse signal. You can track the position and the direction of rotation by monitoring the number of pulses and the relative phase of two signals. In addition, the third channel, index channel is used to reset the position counter.

Signal Operation Modes

The QEI module supports two modes of the signal operation, quadrature phase mode and clock/ direction mode. In **quadrature phase mode**, the encoder produces two clock signals that are 90 degrees out of phase. The edge relationship is used to determine the direction of rotation. In **clock/ direction mode**, the encoder produces a clock signal to indicate steps and the other clock signal to indicate the direction of the rotation.

Capture Mode

If you set quadrature phase mode, there are two capture modes user can choose, capture modes A and B. Capture mode A can be set to update the position counter on every edge of phase A. Capture A and B mode can be set to update the position on every edge of phase A and B. For example, if the pulse is 1000 Hz, the first mode will count 2000 times per second and the second mode will count 4000 times per second.

The max position

A quadrature encoder keeps sending pulse signal to MCU and MCU keeps accumulating position counter. When the value of the position counter is equal to the max position, the position counter will reset to zero.

Index channel

Some 2-channel incremental encoders provide additional channel called index channel (z signal). It will send pulse when reset point is reached. If you set "QEI_CONFIG_RESET_IDX" flag, QEI will reset per revolution.

Swap

Two phase signals, phase A and B can be swapped before being interpreted by QEI module in order to change forward or backward definition. It can also be used to correct miss-wiring of the system.

QEI Function Reference

QEI_Setup

etup						
Syntax	BOOLcdecl QEI_Setup(D)	WORD idx, QEI_SETUP *lpSetup,				
	DWORD cbSetup);					
Description	Setup parameters used in the specified QEI controller					
Parameter	idx [in]					
	Specify the index of QEI controllers. Currently there is only one QEI					
	controller, so always configure 0.					
	IpSetup [in]					
	A pointer to a QEI_SETUP sf	tructure that contains the QEI				
	configuration. This data struc	cture contains the following variables:				
	config [in]					
	DWORD value specifies the	configuration for the quadrature				
	encoder.					
	Mode	Value				
	QEI_CONFIG_CAPTURE_	Only count on phase A				
	A (0x0000000)					
	QEI_CONFIG_CAPTURE_	Count on phase A and phase B				
	A_B (0x0000008)					
	QEI_CONFIG_NO_RESET	Do not reset position on index pulse				
	(0x0000000)					
	QEI_CONFIG_RESET_ID	Reset position on index pulse				
	X (0x0000010)					
	QEI_CONFIG_QUADRAT	Phase A and phase B are quadrature				
	URE (0x0000000)					
	QEI_CONFIG_CLOCK_DI	Phase A and phase B are clock and				
	R (0x0000004)	direction				
	QEI_CONFIG_NO_SWAP	Do not swap phase A and phase B				
	(0x0000000)					
	QEI_CONFIG_SWAP	Swap phase A and phase B				
	(0x0000002)					
	QEI_CONFIG_CAPTURE_	Only count on phase A				
	A (0x0000000)					

	maxPos [in]
	DWORD value specifies the maximum position value.
	velPeriod [in]
	DWORD value specifies the number of clock ticks over which to
	measure the velocity. Set 0 value to disable velocity function.
	velPreDiv [in]
	DWORD value specifies the pre-divider applied to the input
	quadrature signal before it is counted.
	cbSetup [in]
	The length of the structure, in bytes. The caller must set this
	parameter to size of (QEI_SETUP).
Return	Returns TRUE if setup successful, FALSE if setup failed.
Value	
Usage	QEI_SETUP QSetup;
	memset(&QSetup, 0, sizeof(QSetup));
	QSetup.config = QEI_CONFIG_CAPTURE_A_B
	QEI_CONFIG_RESET_IDX QEI_CONFIG_QUADRATURE
	QEI_CONFIG_NO_SWAP;
	QSetup.maxPos = 4000;
	QSetup.velPeriod = 0;
	QSetup.velPreDiv = QEI_VEL_DIV_1;
	if (!QEI_Setup(0, &QSetup, sizeof(QSetup)))
	{
	printf("QEI_Setup failed \n");
	return 0;
	}

QEI_Start

Syntax	BOOLcdecl QEI_Start(DWORD idx);
Description	Startup QEI controller operation.
Parameter	idx [in]
	Specifies the index of QEI controller. By default, there is only one
	QEI controller and therefore, always configure 0.
Return	Returns TRUE if setup successful, FALSE if setup failed.
Value	
Usage	// Start QEI controller
	if(! QEI_Start(0))
	{
	printf("QEI_Start failed \n");
	return 0;
	}

QEI_Stop

•	
Syntax	BOOLcdecl QEI_Stop(DWORD idx);
Description	Stops QEI controller operation
Parameter	idx [in]
	Specifies the index of QEI controller. By default, there is only one
	QEI controller and therefore, always configure 0.
Return	Returns TRUE if setup successful, FALSE if setup failed.
Value	
Usage	// Stop QEI controller
	if (! QEI_Stop(0))
	{
	printf("QEI_Stop failed \n");
	return 0;
	}

QEI_GetI	Direction
----------	-----------

Syntax	BOOLcdecl QEI_GetDirection(DWORD idx, DWORD
•••••	*IpDirection);
Description	This function returns the rotation direction to the last memorized
Description	
	rotation direction setting.
	V NOTE
	The last memorized encoder rotation direction may not be the
	current rotation direction.
Parameter	idx [in]
	Specifies the index of QEI controller. By default, there is only one
	QEI controller and therefore, always configure 0.
	IpDirection [out]
	Points to the DWORD value that specifies the current rotation
	direction.
	1: If moving in the forward direction.
	-1: if moving in the reverse direction.
Return	Returns TRUE if setup successful, FALSE if setup failed.
Value	
Usage	DWORD dir = 0;
	if(! QEI_GetDirection(0, &dir))
	{
	printf("QEI_GetDirection failed \n");
	return 0;
	}
	l '

QEI_GetPosition

Syntax	BOOLcdecl QEI_GetPosition(DWORD idx, DWORD
	*lpPosition);
Description	This function acquires the current position of the encoder.
Parameter	idx [in]
	Specifies the index of QEI controller. By default, there is only one
	QEI controller and therefore, always configure 0.
	IpDirection [out]
	Points to the DWORD value that specifies current position of the
	encoder.
Return	Returns TRUE if setup successful, FALSE if setup failed.
Value	
Usage	DWORD dwPos = 0;
	if (! QEI_GetPosition(0, &dwPos))
	{
	printf("QEI_GetPosition failed \n");
	return 0;
	}

QEI_SetPosition

SetPosition	
Syntax	BOOLcdecl QEI_SetPosition(DWORD idx, DWORD position);
Description	This function sets the current position of the encoder.
Parameter	idx [in]
	Specifies the index of QEI controller. By default, there is only one
	QEI controller and therefore, always configure 0.
	IpDirection [out]
	Value specifies current position of the encoder.
Return	Returns TRUE if setup successful, FALSE if setup failed.
Value	
Usage	if (!QEI_SetPosition(0, 0))
	{
	<pre>printf("QEI_SetPosition failed \n");</pre>
	return 0;
	}
	{ printf("QEI_SetPosition failed \n");

QEI Example 1-- Read Direction and Position

```
int QEIEncoderSample()
{
 // Config the data structure of QEI
 // Capture phase A and phase B signal, reset position when encounter index, don't
swap phase
                A and phase B
 // Set max position as 4000
 QEI_SETUP QSetup;
 memset(&QSetup, 0, sizeof(QSetup));
 QSetup.config = QEI_CONFIG_CAPTURE_A_B | QEI_CONFIG_RESET_IDX |
 QEI_CONFIG_QUADRATURE | QEI_CONFIG_NO_SWAP;
 QSetup.maxPos = 4000;
 QSetup.velPeriod = 0;
 QSetup.velPreDiv = QEI_VEL_DIV_1;
 if (!QEI_Setup(0, &QSetup, sizeof(QSetup)))
 {
      printf("QEI_Setup failed \n");
      return 0;
 }
 // Start QEI controller
 if (!QEI_Start(0))
 {
      printf("QEI_Start failed \n");
      return 0;
 }
 for(int i = 0; i< 30; i++)
 {
      DWORD dwPos = 0;
      // read the Direction of the rotation
      if (!QEI_GetDirection(0, &dwPos))
      {
```

```
printf("GetDirection fail \n");
           return 0;
     }
     printf("direction : %d \n", dwPos);
     // read the position
     if (!QEI_GetPosition(0, &dwPos))
     {
           printf("GetPosition fail \n");
           return 0;
     }
     printf("Position : %d \n", dwPos);
     //Sleep 300 ms
     Sleep(300);
// Start QEI controller
if (!QEI_Stop(0))
     printf("QEI_Stop failed \n");
     return 0;
```

return 0;

}

}

{

}

Deterministic Trigger I/O version 2 (DTIOv2)

The Concept of DTIOv2

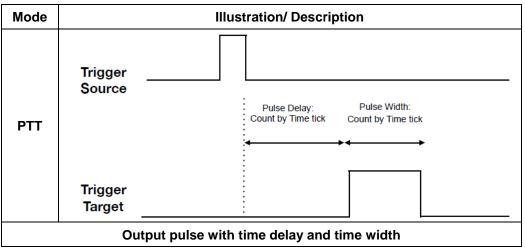
Trigger target

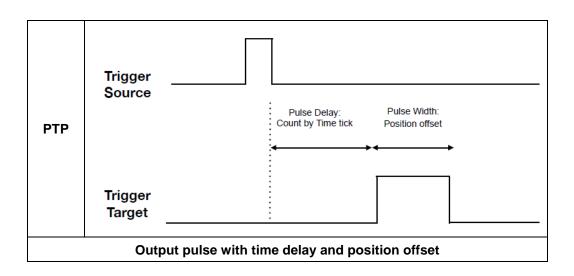
The trigger target is defined as the output signal that can control other equipment, such as LED, camera and motor.

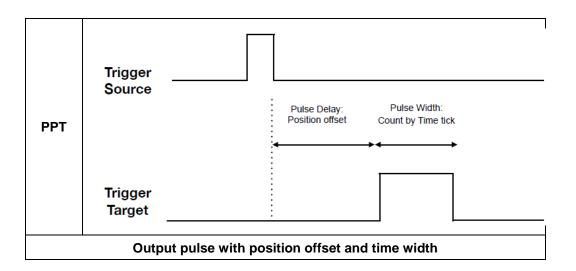
Trigger source

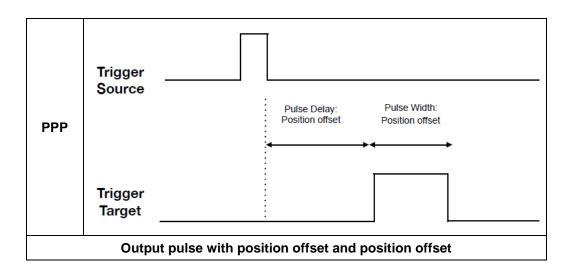
The trigger source is defined as the input signal that can trigger an output signal. Digital and encoder inputs are the trigger sources in DTIOv2. In addition, all trigger targets can also be configured as a trigger source.

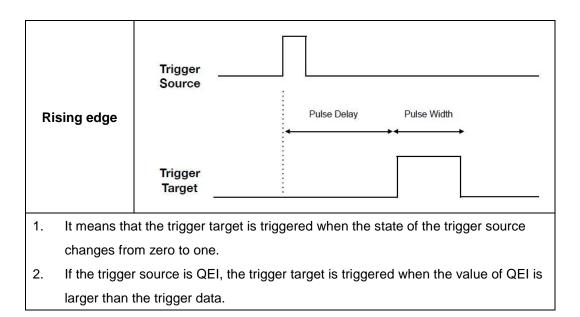
Channel

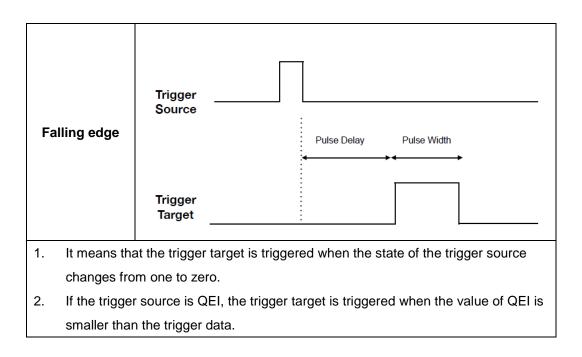

Due to comprehensive input & output mappings, we designed "channel" to simplify the relationship of the trigger source and the trigger target. It is one-to-one mapping. There is exactly one trigger source and one trigger target in each channel.


Max quantity of channels is eight in the DTIOv2 library, so users can define eight trigger sources and trigger target mappings at most. Trigger source can be configured in multiple channels but trigger target only can be configured in one channel. The trigger and target relationship is defined in the following paragraph.

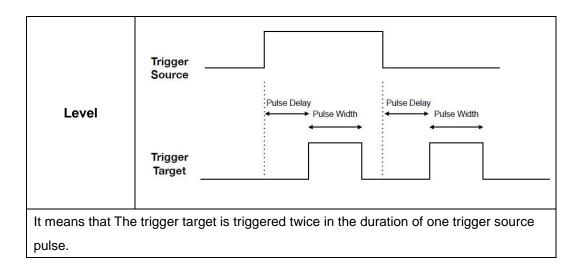

Four types of output signals


The status of output signal can be described by the pulse delay and the pulse width. In DTIO version 1, time is the only unit to tell the distance of pulse delay and pulse width. It is simple but is not accurate enough due to unstable signal conveyance speed. In order to improve the accuracy of DTIO system, we introduce QEI in DTIOv2. Now real displacement can be used to describe the distance of pulse delay and pulse width. Therefore, 2 types of unit and 2 pulse sections can create 4 modes for users to control output signals.





Trigger Mode


There are five trigger modes that can be set by user.

Trigger Mode	Description	
Never	lever It is the initial value. It means turn off this channel.	

		Pulse Delay ←> Pulse Width	Pulse Delay n ←───→ Pulse Widtl	Pulse Delay h ←───→ Pulse Width
Always	Trigger Target			
Infinite pulse				

Time Unit

The basic operation concept of MCU is infinite loop. MCU will process the results of each trigger target based on trigger source in every loop. Time unit is the time interval between two continuous actions that MCU generates the result to the trigger target. We will calculate the pulse delay and pulse width based on this time unit. For example, if the time unit is 25 μ s and the pulse delay is 2000, it means that pulse delay is 50 ms (2000 x 25 μ s).

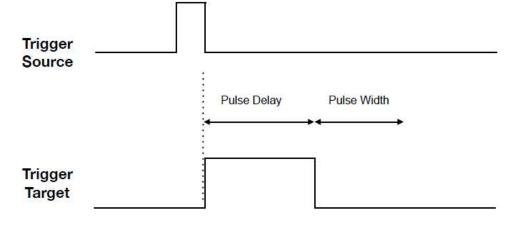
The default value of time unit is 25 μ s. However, users can adjust the time unit to fit their application needs. The value should be configured between 25 ~2500 μ s and setting shorter time unit(< 25 μ s) is not safe and may cause unexpected result.

Delta

Integer value specifies the fine-tuning factor for time unit. The value of +/-1 means increasing / decreasing 0.0125 µs for the time unit. Default value of delta is 0.

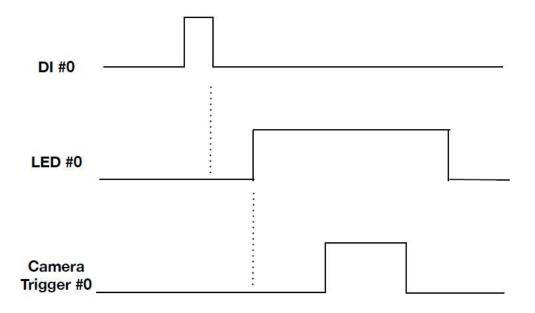
Time Unit and Delta

We will use the simple formula to explain the relationship between time unit and delta. We assume that Total Time Unit (TTU) is the value of time unit that applied to MCU.


Total Time Unit (TTU)

Total Time Unit (TTU) = time unit (ex: $25 \ \mu$ s) + delta * 0.0125 For example, time unit is equal to $25 \ \mu$ s, delta is equal to 10. And then We can calculate TTU and the result is $25.125 \ \mu$ s (TTU = $25 + 10^*0.0125 = 25.125$) Please be careful about the value of TTU. If TTU is below 25 μ s or even below 0 μ s, that will cause unexpected result. We didn't constrain to time unit and delta, so it is recommended calculating TTU before setting up configuration.

Active Low


When the flag of the active low is set, the state of the output signal is high during pulse delay and the output signal is low during pulse width. We will introduce about how to enable this flag in the following paragraph.

Active low Mode

Trigger Target as Trigger Source


It is the new feature we introduce in DTIOv2. User can use "the trigger target" to trigger other trigger target. For example, you can configure a channel that triggers the camera after LED0 is turned on.

Trigger target as trigger source Mode

Software Trigger

We provide 2 software trigger inputs (SI in short) and 2 software trigger outputs (SO in short) in Nvis-5306RT. User can send signals from CPU to MCU directly via SI and receive signals directly from MCU via SO.

Software Trigger

DTIOv2 Function Reference

DT2_Setup

up			
Syntax	BOOLcdecl DT2_Set	tup(DT2_SETUP *lpSetup, DWORD	
	cbSetup);		
escription	Sets up parameters used in the specified DTIOv2 controller.		
arameter	DT2_SETUP [in]		
	Index [in]		
	Set the parameter to co	nfigure which channel to use. There are 8	
	channels in DTIOv2, co	nfigurable parameters are 0~7.	
	modeFlag [in]		
	There are 4 modes you	can configure in this parameter. Set the	
	following value to config	ure the mode you want. Please notice that	
	only "active low" mode f	lag can be enabled with three other modes at	
	the same time. More inf	ormation will be provided in the next chapter.	
	Mode	Value	
	Disable 0		
	Active Low	DT2_INIT_HIGN (0x01)	
	Trigger Buffer	DT2_TRIG_BUFF (0x02)	
	External Input	DT2_TRIG_EIDD (0x04)	
	(default deactivated)		
	External Input	DT2_TRIG_EIDA (0x08)	
	(default activated)		
	modeType [in] Mode Value		
	PTT	DT2_MODE_PTT (0x00)	
	PTP	DT2_MODE_PTP (0x01)	
	PPT	DT2_MODE_PPT (0x02)	
	PPP	DT2_MODE_PPP (0x03)	

trigMode [in]

<u> </u>	
Mode	Value
Never	DT2_TRIG_NEVER (0x00)
Rising edge	DT2_TRIG_RISING (0x01)
Falling edge	DT2_TRIG_FALLING (0x02)
Level	DT2_TRIG_LEVEL (0x03)
Always	DT2_TRIG_ALWAYS (0x04)

trigData [in]

This parameter configures the trigger position when QEI is set as the trigger source.

trigSrc [in]

This parameter configures the trigger source.

Digital Input

I/O	Value	
DI 0	DT2_SRC_DI_00	(0x00010001)
DI 1	DT2_SRC_DI_01	(0x00010002)
DI 2	DT2_SRC_DI_02	(0x00010004)
DI 3	DT2_SRC_DI_03	(0x00010008)
DI 4	DT2_SRC_DI_04	(0x00010010)
DI 5	DT2_SRC_DI_05	(0x00010020)
DI 6	DT2_SRC_DI_06	(0x00010040)
DI 7	DT2_SRC_DI_07	(0x00010080)
Digital Output		
I/O	Value	
DO 0	DT2_SRC_DO_00	(0x00020001)
DO 1	DT2_SRC_DO_01	(0x00020002)
DO 2	DT2_SRC_DO_02	(0x00020004)
DO 3	DT2_SRC_DO_03	(0x00020008)
DO 4	DT2_SRC_DO_04	(0x00020010)
DO 5	DT2_SRC_DO_05	(0x00020020)
DO 6	DT2_SRC_DO_06	(0x00020040)
DO 7	DT2_SRC_DO_07	(0x00020080)

Camera Trigger Output

I/O	Value	
TRIG 0	DT2_SRC_TRIG_00	(0x00020100)
TRIG 1	DT2_SRC_TRIG_01	(0x00020200)
TRIG 2	DT2_SRC_TRIG_02	(0x00020400)
TRIG 3	DT2_SRC_TRIG_03	(0x00020800)
LED Controller		
I/O	Value	
LED 0	DT2_SRC_LED_0	(0x00200001)
LED 1	DT2_SRC_LED_1	(0x00200002)
LED 2	DT2_SRC_LED_2	(0x00200004)
LED 3	DT2_SRC_LED_3	(0x00200008)
Software Trigge	r Input/ Output	
I/O	Value	
SI 0	DT2_SRC_SI_00	(0x40000001)
SI 1	DT2_SRC_SI_01	(0x4000002)
SO 0	DT2_SRC_SO_00	(0x80000001)
SO1	DT2_SRC_SO_01	(0x80000002)
QEI		
I/O	Value	
QEI	DT2_SRC_QEI_0	(0x00080001)

trigTgt [in]

This parameter configures the trigger target.

Digital Output

Mode	Value	
DO 0	DT2_TGT_DO_00	(0x00020001)
DO 1	DT2_TGT_DO_01	(0x00020002)
DO 2	DT2_TGT_DO_02	(0x00020004)
DO 3	DT2_TGT_DO_03	(0x00020008)
DO 4	DT2_TGT_DO_04	(0x00020010)
DO 5	DT2_TGT_DO_05	(0x00020020)
DO 6	DT2_TGT_DO_06	(0x00020040)
DO 7	DT2_TGT_DO_07	(0x00020080)

Camera Trigger Output

I/O	Value	
TRIG 0	DT2_TGT_TRIG_00	(0x00020100)
TRIG 1	DT2_TGT_TRIG_01	(0x00020200)
TRIG 2	DT2_TGT_TRIG_02	(0x00020400)
TRIG 3	DT2_TGT_TRIG_03	(0x00020800)
LED Controller		
I/O	Value	
LED 0	DT2_TGT_LED_0	(0x00200001)
LED 1	DT2_TGT_LED_1	(0x00200002)
LED 2	DT2_TGT_LED_2	(0x00200004)
LED 3	DT2_TGT_LED_3	(0x00200008)
Software Trigger Input/ Output		
I/O	Value	
SO 0	DT2_TGT_SO_00	(0x80000001)
SO1	DT2_TGT_SO_01	(0x8000002)

pulseDelay [in]

Mode	Description
PTT	Represent time of the pulse delay.
PTP	Ex: pulseDelay = 1000
	Pulse Delay = 1000 x time unit(default
	value is 25) ms
PPT	Represent position offset of the pulse delay.
PPP	Ex: pulseDelay = 1000
	The distance from the trigger pointer to the
	rising edge of pulse is 1000 encoder units

pulseWidth [in]

Mode	Description
PTT	Represent time of the pulse width.
PPT	Ex: pulseWidth = 1000
	Pulse Width = 1000 x time unit(default
	value is 25) ms
PTP	Represent position offset of the pulse width
PPP	Ex: pulseWidth = 1000
	The distance from the rising edge to the
	falling edge is 1000 encoder units

	pulseData1 [in]
	It is the reserved parameter. Set 0 in all situations.
	pulseData2 [in]
	It is the reserved parameter. Set 0 in all situations.
	cbSetup [in]
	cbSetup is the length of the structure and is calculated in byte. You
	can use size of(DT2_SETUP) to calculate.
Return	Returns TRUE if DT2_SETUP successful, FALSE if DT2_SETUP
	failed.
Usage	// Fill DT2_SETUP data struture
	DT2_SETUP aSetup;
	memset(&aSetup, 0, sizeof(aSetup));
	aSetup.trigTgt = DT2_TGT_LED_0;
	aSetup.trigSrc = 0;
	aSetup.trigMode = DT2_TRIG_ALWAYS;
	aSetup.index = 0;
	aSetup.modeType = DT2_MODE_PTT;
	aSetup.pulseDelay = 20000;
	aSetup.pulseWidth = 20000;
	// Configure parameters of the channel
	if (!DT2_Setup(&aSetup, sizeof(aSetup)))
	{
	printf("DT2_Setup failed \n");
	return 0;
	}

DT2_Start

Syntax

BOOL __cdecl DT2_Start(void);

Description	Starts DTIOv2 controller operation.
Parameter	None
Return	Return TRUE if DT2_Start successful, FALSE if DT2_Start
Value	procedure failed.
Usage	// Start Deterministic Trigger I/O v2 operation
	if (!DT2_Start())
	{
	printf("DT2_start failed \n");
	return 0;
	}

DT2_Stop

Syntax	BOOLcdecl DT2_Stop(void);		
Description	Stop DTIOv2 controller operation.		
Parameter	None		
Return	Return TRUE if DT2_Stop successful, FALSE if DT2_Stop procedure		
Value	failed.		
Usage	// Stop Deterministic Trigger I/O v2 operation		
	if (!DT2_Stop())		
	{		
	printf("DT2_Stop failed \n");		
	return 0;		
	}		
	Description Parameter Return Value		

DT2_SetUnit

_SetUnit		
Syntax BOOLcdecl DT2_SetUnit(DWORD unit, int delt		BOOLcdecl DT2_SetUnit(DWORD unit, int delta);
	Description	Specify the time unit for DTIOv2. This function can be skipped if you

	want to use the default setting (25 μ s).			
Parameter	Unit [in]			
	Specify the time unit in micro-second (recommended settings 25 to			
	2500).			
	Delta [in]			
	Integer value specifies the fine-tuning factor for time unit. The value			
	of +/- 1 means increasing / decreasing 0.0125 μs for the time unit.			
	Default value of delta is 0.			
Return	Return TRUE if DT2_SetUnit succeeded, FALSE if DT2_SetUnit			
Value	failed.			
Usage	// Set time unit as 20 microseconds			
	if (!DT2_SetUnit(20, 0))			
	{			
	printf("DT2_SetUnit failed \n");			
	return 0;			
	}			

DT2_GetUnit

Syntax	WORDcdecl DT2_GetUnit(void);	
Description	Acquire current time unit setting (in microseconds).	
Parameter	None	
Return	WORD is the data type of the return value. It represents the value of	
Value	the current time unit.	
Usage	WORD unit = DT2_GetUnit();	

DT2_StPush

StPush		
	Syntax	BOOLcdecl DT2_StPush(DWORD mask, DWORD value);
	Description	Writes data to MCU via software trigger. You can write all software

	trigger inputs through this function simultaneously.			
Parameter	Mask[in]			
	Each bit of this parameter determines whether relative software			
	trigger input is used or not.			
	If software trigger input 0 (SI0) is used, set bit 1 as 1.			
	If software trigger input 1(SI1) is used, set bit 2 as 1.			
	Other bits set 0 if those software trigger inputs are not used.			
	Value[in]			
	Each bit of this parameter represents a software trigger input. At			
	most it can configure 32 software trigger inputs. We provide 2			
	software trigger inputs in DTIOv2, so we only use bit 1 and bit 2.			
Return	Return TRUE if DT2_StPush successful, FALSE if DT2_StPush			
Value	failed.			
Usage	Set software trigger input 0 as 1.			
	if (!DT2_StPush(0x0000001, 1))			
	{			
	printf("DT2_StPush failed \n");			
	return 0;			
	}			

DT2_StPull

Syntax	BOOLcdecl DT2_StPull(DWORD* lpValue);
Description	Read data from MCU via software trigger. You can read all software

	trigger outputs through this function simultaneously.				
Parameter	IpValue[out]				
	A pointer to a DWORD value that specifies the software trigger				
	outputs. Each bit of this parameter represents a software trigger				
	output. At most it can configure 32 software trigger outputs. We				
	provide 2 software trigger outputs in DTIOv2, so we only use bit 1				
	and bit 2 here.				
Return	Returns TRUE if DT2_StPull successful, FALSE if DT2_StPull failed.				
Value					
Usage	DWORD soValue = 0;				
	if(! DT2_StPull(&soValue))				
	{				
	printf("DT2_StPull failed \n");				
	return 0;				
	}				

DTIOv2 Programming Tips

Always Cease All Actions Before Starting Again

DO NOT execute DT2_Start when MCU is still running, unexpected errors may happen. Always execute DT2_Stop for MCU to cease all actions. Once DT2_Stop returns successful (all actions ceased), execute DT2_Start to start up again is the safe and recommended method.

Stop When You See Error Messages

Most of functions we provide are designed to return false messages when errors occur. Therefore, we recommend stopping program.

```
if (!DT2_Start())
{
    printf("DT2_start failed \n");
    return 0;
}
```


Reset All Channel When Starting DTIOv2 Program

It is recommended to reset all eight channels at the beginning of a DTIOv2 program as the system will remember the last configuration of each channel. For example, channel 2 and channel 3 were set in previous operation. For a new operation, you only program channel 1 (without resetting previous settings), when you execute DT2_Start, channel 1, 2 and 3 will all be started. It may cause unexpected behaviors, so we suggest that a reset of all channels at the beginning of a DTIOv2 program.

```
int initialChannel()
```

```
{
```

}

```
//Initialize 8 channels to avoid double definition*/
for(int j = 0; j < 8; j++)
{
    DT2_SETUP zeroSetup;
    memset(&zeroSetup,0,sizeof(zeroSetup));
    zeroSetup.index = j;
    if ( ! DT2_Setup(&zeroSetup, sizeof(zeroSetup)) )
    {
        printf("Initializing DT2 channels failed \n");
        return 0;
    }
return 0;</pre>
```


DTIOv2 Example 1 - Infinite Pulse Train

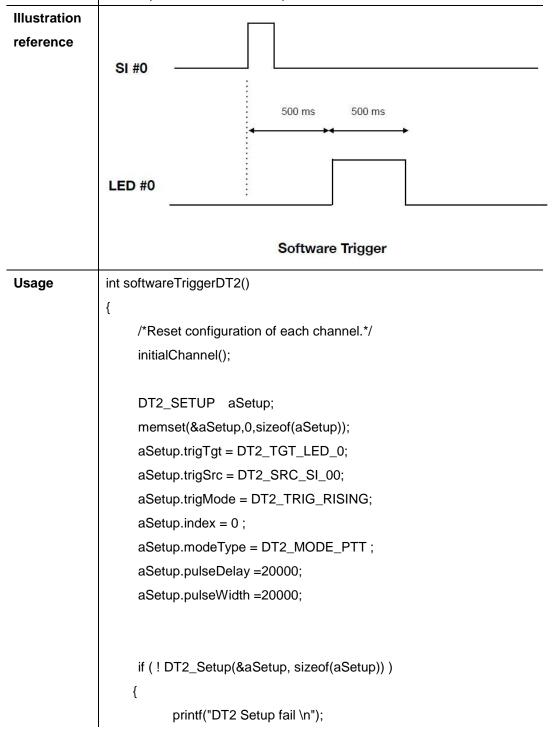
Description Illustration reference	This example demonstrates how to use DTIOv2 to generate an infinite pulse to trigger LED #0 in PTT mode. In this case, LED #0 will be turned off for 500 ms (20000 x 25 µs) and then turned on for 500 ms (20000 x 25 µs). The brightness of the LED is configured by constant current and set as 10 mA. DTIOv2 will be stopped after 4 seconds.			
	int timePeeeDT2()			
Usage	int timeBaseDT2() {			
	//Initialize configuration of 8 channels			
	initialChannel();			
	// Fill DT2_SETUP data struture			
	 DT2_SETUP aSetup;			
	memset(&aSetup, 0, sizeof(aSetup));			
	aSetup.trigTgt = DT2_TGT_LED_0;			
	aSetup.trigSrc = 0;			
	aSetup.trigMode = DT2_TRIG_ALWAYS;			
	aSetup.index = 0;			
	aSetup.modeType = DT2_MODE_PTT;			
	aSetup.pulseDelay = 20000;			
	aSetup.pulseWidth = 20000;			
	// Configure parameters of the channel			
	if (!DT2_Setup(&aSetup, sizeof(aSetup)))			
	printf("DT2_Setup failed \n"); return 0;			
	}			


```
// Config LED0 as CC mode and set the current as 10 mA
DWORD pins = 0x00010000;
DWORD mode = (pins) | LED_MODE_CC;
if (LED_SetCurrentDriving(mode, 10) == false)
{
     printf("Setting LED failed \n");
     return 0;
}
// Start Determinstic Trigger I/O v2 operation
if (!DT2_Start())
{
     printf("Starting DT2 failed \n");
     return 0;
}
// Stop DT2 after 4 senconds
Sleep(4000);
if (!DT2_Stop())
{
     printf("Stopping DT2 failed \n");
     return 0;
}
return 0;
```

}

DTIOv2 Example 2 - Use DI to Trigger LED

Description In this example, DI #0 is the trigger source and it triggers LED			
	rising edge. LED #0 is the trigger target. We redefine the time unit as 30		
	microseconds, so the pulse delay of LED is 300 ms (10000 x 30 μ s) and		
	the pulse width of LED is 300 ms (10000 x 30 μ s). The brightness of the LED is configured by constant current and set as 10 mA.		
Illustration			
reference			
	DI #0		
	Pulse Delay: Pulse Width:		
	300 ms 300 ms		
	← → ← → →		
	LED #0		
	:		
	DI0 trigger LED0		
Usage	int timeBaseDIDT2()		
	{		
	//Initialize configuration of 8 channels		
	initialChannel();		
	// Fill DT2_SETUP data struture		
	DT2_SETUP aSetup;		
	memset(&aSetup, 0, sizeof(aSetup));		
	aSetup.trigTgt = DT2_TGT_LED_0;		
	aSetup.trigSrc = DT2_SRC_DI_00;		
	aSetup.trigMode = DT2_TRIG_RISING;		
	aSetup.index = 0;		
	aSetup.mdex = 0, aSetup.modeType = DT2_MODE_PTT; aSetup.pulseDelay = 10000;		
aSetup.pulseWidth = 10000;			
	// Sat time unit as 20 microsconda		
// Set time unit as 30 microseconds			
	if (!DT2_SetUnit(30, 0))		
	{		
printf("DT2_SetUnit failed \n");			




```
return 0;
}
// Configure parameters of the channel
if (!DT2_Setup(&aSetup, sizeof(aSetup)))
{
     printf("DT2_Setup failed \n");
     return 0;
}
// Config LED0 as CC mode and set the current as 10 mA
DWORD pins = 0x00010000;
DWORD mode = (pins) | LED_MODE_CC;
if (LED_SetCurrentDriving(mode, 10) == false)
{
     printf("Setting LED failed \n");
     return 0;
}
// Start Determinstic Trigger I/O v2 operation
if (!DT2_Start())
{
     printf("Starting DT2 failed \n");
     return 0;
}
// Stop DT2 after 10 senconds
Sleep(10000);
if (!DT2_Stop())
{
     printf("Stopping DT2 failed \n");
     return 0;
}
return 0;
```

}

DTIOv2 Example 3 -- Software Trigger

DescriptionThis example demonstrates how to use software trigger input as the
trigger source to trigger LED. Changing the status of the SI0 from 0 to 1
in short time is used to create the rising edge of the pulse signal. The
LED #0 will be turned off for 500 ms (20000 x 25µs) and turned on for
500 ms(20000 x 25 µs) after each trigger. The brightness of the LED is
configured by constant current and set as 10 mA. It will trigger 5 times
and stop DTIOv2 in this example.


```
return 0;
}
// Config LED0 as CC mode and set the current as 10 mA
 DWORD pins = (0x00010000) << 0;
 DWORD mode = (pins) | LED_MODE_CC;
if (LED_SetCurrentDriving(mode, 10) == false)
{
      printf("Initial LED failed \n");
      return 0;
}
// Start Determinstic Trigger I/O v2 operation
 if (!DT2_Start())
{
      printf("DT2_start failed \n");
      return 0;
}
//Change the status of SI0 from 0 -> 1 and set 1->0 to create pulse
// We produce five times of pulse in this for loop
for (int i = 0; i < 5; ++i)
{
      if (!DT2_StPush(0x0000001, 0))
      {
           printf("DT2_StPush failed \n");
           return 0;
      }
      Sleep(10);
      if (!DT2_StPush(0x0000001, 1))
      {
           printf("DT2_StPush failed \n");
           return 0;
```



```
}
Sleep(1000);
printf("Software trigger: %d \n", i);
}
// Stop Determinstic Trigger I/O v2 operation
if (!DT2_Stop())
{
    printf("DT2_Stop failed \n");
    return 0;
}
return 0;
```

}

DTIOv2 Example 4 - The Trigger Target as the Trigger Source

trigger source in the other channel. In the first channel, DO #0 is triggered by SI #0 and then DO #0 is used to trigger LED #0 in the second channel. Both channels are set in PTT mode and triggers on rising edge signal.	Description	This example is to demonstrate how to use the trigger target as the				
Both channels are set in PTT mode and triggers on rising edge signal. Illustration reference SI #0 DO #0 500 ms DO #0 500 ms DO #0 500 ms DO #0 500 ms 500 ms DO #0 The trigger target as the trigger source Usage Int triggerOutAsSource() { /*Reset configuration of each channel.*/ initialChannel(); //Trigger DO0 by SI0 based on PTT mode DT2_SETUP aSetup; memset(&aSetup, 0, sizeof(aSetup))); aSetup.trigNode = DT2_SRC_SI_00; aSetup.index = 0; aSetup.index = 0; aSetup.index = 0; aSetup.pulseDelay = 2000; aSetup.pulseDelay = 2000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));		trigger source in the other channel. In the first channel, DO #0 is triggered				
Illustration reference SI #0 DO #0 500 ms IED #0 500 ms The trigger target as the trigger source Usage int triggerOutAsSource() { /'Reset configuration of each channel.*/ initialChannel(); //Trigger DO0 by SI0 based on PTT mode DT2_SETUP aSetup; memset(&aSetup, 0, sizeof(aSetup)); aSetup.trigTor = DT2_SRC_SI_00; aSetup.trigTor = DT2_SRC_SI_00; aSetup.index = 0; aSetup.index = 0; aSetup.nulseDelay = 2000; aSetup.pulseWidth = 2000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));		by SI #0 and then DO #0 is used to trigger LED #0 in the second channel.				
reference SI #0 DO #0 						
SI #0 500 ms 500 ms DO #0 500 ms 500 ms LED #0 The trigger target as the trigger source Usage int triggerOutAsSource() { /*Reset configuration of each channel.*/ initialChannel(); //Trigger DO0 by SI0 based on PTT mode DT2_SETUP aSetup, 0, sizeof(aSetup)); aSetup.trigTgt = DT2_SRC_DO_00; aSetup.trigTgt = DT2_SRC_SI_00; aSetup.index = 0; aSetup.index = 0; aSetup.nodeType = DT2_MODE_PTT; aSetup.pulseDelay = 2000; aSetup.pulseDelay = 2000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));	Illustration					
DO #0 500 ms 500 ms LED #0 500 ms 500 ms Usage int triggerOutAsSource() { /'Reset configuration of each channel.*/ initialChannel(); //Trigger DO0 by SI0 based on PTT mode DT2_SETUP DT2_SETUP aSetup.trigTgt = DT2_SRC_DO_00; aSetup.trigTgt = DT2_SRC_SI_00; aSetup.trigTore = DT2_TRIG_RISING; aSetup.index = 0; aSetup.nodeType = DT2_MODE_PTT; aSetup.pulseDelay = 20000; aSetup.pulseDelay = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup.2; memset(&aSetup2, 0, sizeof(aSetup2));	reference					
D0 #0		SI #0				
D0 #0		500 mm - 500 mm				
LED #0 The trigger target as the trigger source Usage int triggerOutAsSource() { //Trigger DO0 by SI0 based on PTT mode DT2_SETUP aSetup; memset(&aSetup, 0, sizeof(aSetup)); aSetup.trigTgt = DT2_SRC_DO_00; aSetup.trigMode = DT2_TRIG_RISING; aSetup.index = 0; aSetup.modeType = DT2_MODE_PTT; aSetup.pulseDelay = 20000; aSetup.pulseDelay = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));						
LED #0 The trigger target as the trigger source Usage int triggerOutAsSource() { /*Reset configuration of each channel.*/ initialChannel(); //Trigger DO0 by SI0 based on PTT mode DT2_SETUP aSetup; memset(&aSetup, 0, sizeof(aSetup)); aSetup.trigTgt = DT2_SRC_DO_00; aSetup.trigTgt = DT2_SRC_SI_00; aSetup.trigMode = DT2_TRIG_RISING; aSetup.index = 0; aSetup.index = 0; aSetup.pulseDelay = 20000; aSetup.pulseDelay = 20000; aSetup.pulseDelay = 20000; aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2)); memset(&aSetup2, 0, sizeof(aSetup2));		DO #0				
LED #0 The trigger target as the trigger source Usage int triggerOutAsSource() { /*Reset configuration of each channel.*/ initialChannel(); //Trigger DO0 by SI0 based on PTT mode DT2_SETUP aSetup; memset(&aSetup, 0, sizeof(aSetup)); aSetup.trigTgt = DT2_SRC_DO_00; aSetup.trigTgt = DT2_SRC_SI_00; aSetup.trigMode = DT2_TRIG_RISING; aSetup.index = 0; aSetup.index = 0; aSetup.pulseDelay = 20000; aSetup.pulseDelay = 20000; aSetup.pulseDelay = 20000; aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2)); memset(&aSetup2, 0, sizeof(aSetup2));			_			
LED #0 The trigger target as the trigger source Usage int triggerOutAsSource() { /*Reset configuration of each channel.*/ initialChannel(); //Trigger DO0 by SI0 based on PTT mode DT2_SETUP aSetup; memset(&aSetup, 0, sizeof(aSetup)); aSetup.trigTgt = DT2_SRC_DO_00; aSetup.trigTgt = DT2_SRC_SI_00; aSetup.trigMode = DT2_TRIG_RISING; aSetup.index = 0; aSetup.index = 0; aSetup.pulseDelay = 20000; aSetup.pulseDelay = 20000; aSetup.pulseDelay = 20000; aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2)); memset(&aSetup2, 0, sizeof(aSetup2));		500 ms 500 ms				
The trigger target as the trigger source Usage int triggerOutAsSource() { /*Reset configuration of each channel.*/ initialChannel(); //Trigger DO0 by SI0 based on PTT mode DT2_SETUP aSetup; memset(&aSetup, 0, sizeof(aSetup)); aSetup.trigTgt = DT2_SRC_DO_00; aSetup.trigTgt = DT2_SRC_SI_00; aSetup.trigMode = DT2_TRIG_RISING; aSetup.index = 0; aSetup.index = 0; aSetup.pulseDelay = 20000; aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2)); itelevelopic						
Usage int triggerOutAsSource() { /*Reset configuration of each channel.*/ initialChannel(); //Trigger DO0 by SI0 based on PTT mode DT2_SETUP aSetup; memset(&aSetup, 0, sizeof(aSetup)); aSetup.trigTgt = DT2_SRC_DO_00; aSetup.trigSrc = DT2_SRC_SI_00; aSetup.trigMode = DT2_TRIG_RISING; aSetup.index = 0; aSetup.modeType = DT2_MODE_PTT; aSetup.pulseDelay = 20000; aSetup.ulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));		LED #0				
Usage int triggerOutAsSource() { /*Reset configuration of each channel.*/ initialChannel(); //Trigger DO0 by SI0 based on PTT mode DT2_SETUP aSetup; memset(&aSetup, 0, sizeof(aSetup)); aSetup.trigTgt = DT2_SRC_DO_00; aSetup.trigSrc = DT2_SRC_SI_00; aSetup.trigMode = DT2_TRIG_RISING; aSetup.index = 0; aSetup.modeType = DT2_MODE_PTT; aSetup.pulseDelay = 20000; aSetup.ulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));						
<pre>{ /*Reset configuration of each channel.*/ initialChannel(); //Trigger DO0 by SI0 based on PTT mode DT2_SETUP aSetup; memset(&aSetup, 0, sizeof(aSetup)); aSetup.trigTgt = DT2_SRC_DO_00; aSetup.trigSrc = DT2_SRC_SI_00; aSetup.trigMode = DT2_TRIG_RISING; aSetup.index = 0; aSetup.index = 0; aSetup.nulseDelay = 20000; aSetup.pulseDelay = 20000; aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2)); </pre>		The trigger target as the trigger source				
<pre>{ /*Reset configuration of each channel.*/ initialChannel(); //Trigger DO0 by SI0 based on PTT mode DT2_SETUP aSetup; memset(&aSetup, 0, sizeof(aSetup)); aSetup.trigTgt = DT2_SRC_DO_00; aSetup.trigSrc = DT2_SRC_SI_00; aSetup.trigMode = DT2_TRIG_RISING; aSetup.index = 0; aSetup.index = 0; aSetup.nulseDelay = 20000; aSetup.pulseDelay = 20000; aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2)); </pre>	Usage					
<pre>initialChannel(); //Trigger DO0 by SI0 based on PTT mode DT2_SETUP aSetup; memset(&aSetup, 0, sizeof(aSetup)); aSetup.trigTgt = DT2_SRC_DO_00; aSetup.trigSrc = DT2_SRC_SI_00; aSetup.trigMode = DT2_TRIG_RISING; aSetup.index = 0; aSetup.index = 0; aSetup.pulseDelay = 20000; aSetup.pulseDelay = 20000; aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));</pre>						
<pre>//Trigger DO0 by SI0 based on PTT mode DT2_SETUP aSetup; memset(&aSetup, 0, sizeof(aSetup)); aSetup.trigTgt = DT2_SRC_DO_00; aSetup.trigSrc = DT2_SRC_SI_00; aSetup.trigMode = DT2_TRIG_RISING; aSetup.index = 0; aSetup.index = 0; aSetup.modeType = DT2_MODE_PTT; aSetup.pulseDelay = 20000; aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));</pre>						
DT2_SETUP aSetup; memset(&aSetup, 0, sizeof(aSetup)); aSetup.trigTgt = DT2_SRC_DO_00; aSetup.trigSrc = DT2_SRC_SI_00; aSetup.trigMode = DT2_TRIG_RISING; aSetup.index = 0; aSetup.modeType = DT2_MODE_PTT; aSetup.pulseDelay = 20000; aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));						
DT2_SETUP aSetup; memset(&aSetup, 0, sizeof(aSetup)); aSetup.trigTgt = DT2_SRC_DO_00; aSetup.trigSrc = DT2_SRC_SI_00; aSetup.trigMode = DT2_TRIG_RISING; aSetup.index = 0; aSetup.modeType = DT2_MODE_PTT; aSetup.pulseDelay = 20000; aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));						
<pre>memset(&aSetup, 0, sizeof(aSetup)); aSetup.trigTgt = DT2_SRC_DO_00; aSetup.trigSrc = DT2_SRC_SI_00; aSetup.trigMode = DT2_TRIG_RISING; aSetup.index = 0; aSetup.modeType = DT2_MODE_PTT; aSetup.pulseDelay = 20000; aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));</pre>		//Trigger DO0 by SI0 based on PTT mode				
aSetup.trigTgt = DT2_SRC_DO_00; aSetup.trigSrc = DT2_SRC_SI_00; aSetup.trigMode = DT2_TRIG_RISING; aSetup.index = 0; aSetup.modeType = DT2_MODE_PTT; aSetup.pulseDelay = 20000; aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));		DT2_SETUP aSetup;				
aSetup.trigSrc = DT2_SRC_SI_00; aSetup.trigMode = DT2_TRIG_RISING; aSetup.index = 0; aSetup.modeType = DT2_MODE_PTT; aSetup.pulseDelay = 20000; aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));		memset(&aSetup, 0, sizeof(aSetup));				
aSetup.trigMode = DT2_TRIG_RISING; aSetup.index = 0; aSetup.modeType = DT2_MODE_PTT; aSetup.pulseDelay = 20000; aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));						
aSetup.index = 0; aSetup.modeType = DT2_MODE_PTT; aSetup.pulseDelay = 20000; aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));						
aSetup.modeType = DT2_MODE_PTT; aSetup.pulseDelay = 20000; aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));						
aSetup.pulseDelay = 20000; aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));						
aSetup.pulseWidth = 20000; //Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));						
//Trigger LED0 by DO0 based on PTT mode DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));						
DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));		$a \Im e(up, pu) \Im evv(u) = 20000,$				
DT2_SETUP aSetup2; memset(&aSetup2, 0, sizeof(aSetup2));		//Trigger LED0 by DO0 based on PTT mode				
		//Trigger LED0 by DO0 based on PTT mode				
aSetup2.trigTgt = DT2_SRC_LED_0;						
		DT2_SETUP aSetup2;				

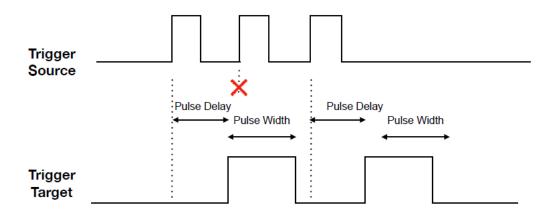

```
aSetup2.trigSrc = DT2_SRC_DO_00;
aSetup2.trigMode = DT2_TRIG_RISING;
aSetup2.index = 1;
aSetup2.modeType = DT2_MODE_PTT;
aSetup2.pulseDelay = 20000;
aSetup2.pulseWidth = 20000;
// Configure parameters of the channel
if (!DT2_Setup(&aSetup, sizeof(aSetup)))
{
     printf("DT2_Setup fail \n");
     return 0;
}
if (!DT2_Setup(&aSetup2, sizeof(aSetup2)))
{
     printf("DT2_Setup fail \n");
     return 0;
}
// Config LED0 as CC mode and set the current as 10 mA
DWORD pins = 0x00010000;
DWORD mode = (pins) | LED_MODE_CC;
if (LED_SetCurrentDriving(mode, 10) == false)
{
     printf("Setting LED failed \n");
     return 0;
}
// Start Determinstic Trigger I/O v2 operation
if (!DT2_Start())
{
     printf("DT2_start failed \n");
     return 0;
}
```

170

//Change the status of SI0 from 0 -> 1 and set 1->0 to create pulse

```
// We produce five times of pulse in this for loop
for (int i = 0; i < 5; ++i)
{
     if (!DT2_StPush(0xFFFFFFF, 0))
     {
           printf("DT2_StPush failed \n");
           return 0;
     }
     Sleep(10);
     if (!DT2_StPush(0xFFFFFFF, 1))
     {
           printf("DT2_StPush failed \n");
           return 0;
     }
     Sleep(1000);
     printf("Software trigger: %d \n", i);
}
// Stop Determinstic Trigger I/O v2 operation
if (!DT2_Stop())
{
     printf("DT2 stop fail \n");
     return 0;
}
return 0;
```

}


Appendix E: Advanced DTIOv2

To enhance the power of DTIOv2, we provide two new features that make DTIOv2 more applicable in various industrial environments. The two features are "Trigger Buffer" and "External Input". They will be explained in the following sections.

The Concept of Advanced DTIOv2

Trigger Buffer

Generally, the trigger target won't be interrupted during the active status. The active status is the time of pulse delay and pulse width. Therefore, before the active status ends, it will not receive any trigger signals from the trigger source. In other words, it ignores all trigger source inputs until the end of the pulse width. This mechanism will protect the trigger target to complete its work from unpredictable accidents.

With out Buffer trigger

In some cases, every pulse of the trigger source should result in relative action in the trigger target signal. Hence, we design a function called "trigger buffer" to process such actions. In order to protect the trigger target to finish its work, trigger signal will not be interrupted before the active status ends. However, the trigger buffer mechanism continues to calculate the pulse delay and pulse width in the background. Once the active status pulse width is over, the trigger target continues to perform signals of pulse delay and pulse width in the trigger buffer.

🖗 NOTE

- 1. Unable to trigger buffer and "always" trigger mode at the same time. When the system is in "always" trigger mode, the buffer is automatically triggered and filled within a millisecond.
- 2. **Buffer size is 32.** If the buffer is full, the mechanism stops storing and will ignore trigger signals.

Trigger Buffer can be Applied to 8 Channels Simultaneously

External Input

In machine vision applications, image processing is the key to determine if the product is defective or not. Image processing requires powerful processing capability to make decisions within microsecond or even milliseconds. Powerful image processing units in a computer may include CPU, GPU or dedicated MCU. What is even more efficient is when we can have two or all three working side-by-side, such as the CPU performing the initial processing and sends decoded preliminary results to the dedicated MCU. This the main idea and why we developed an "External Input" feature in DTIOv2.

Nuvis-5306RT is composed of two main processing powerhouses by default, the mother board with CPU and chipset and the dedicated MCU. What we have done is built an efficient communication channel between the two so they can work hand-in-hand.

We added an additional action during the pulse delay of the trigger target. We give an index to this pulse and send information to the computer. Then the computer will send back information containing the status of this pulse within the time of the pulse delay. Sending 1 means activate pulse and sending 0 means deactivate pulse.

If MCU does not receive the status of this pulse before the end of pulse delay, it will assign the default value to the status to this pulse. We have mentioned there are two types of External Input in mode Flag. You can choose the relative flag to decide the default value.

External Input (deactivated by default)	DT2_TRIG_EIDD	(0x04)
External Input (activated by default)	DT2_TRIG_EIDA	(0x08)

NOTE

- 1. Unable to trigger buffer and "always" trigger mode at the same time. When the system is in "always" trigger mode, the buffer is automatically triggered and filled within a millisecond.
- 2. External output is only valid on the last channel. When configuring multiple channels, only the last channel is valid for "External Input". Eg. If you configure channels 2, 4, 6, only channel 6 can be configured as "External Input".

3. **Buffer size is 32.** If the buffer is full, the mechanism stops storing and will ignore trigger signals.

Advanced DTIOv2 Function Reference

DT2_EiRegisterIndexed

Syntax	BOOLcdecl DT2_EiRegisterIndexed(void (stdcall
	*pfnHandler)(DWORD data));
Description	It registers a function that can determine whether to send an activate
	pulse command or a deactivate pulse command.
Parameter	pfnHandler [in]
	A point to the function that contain an argument which is DWORD.
Return	Return TRUE if DT2_EiRegisterIndexed successful, FALSE if
Value	DT2_EiRegisterIndexed failed.
Usage	Sending 1 means activate pulse and sending 0 means deactivate pulse.
	<pre>static voidstdcallIndexedHandler(DWORD index) { /* If the index is odd number, send 1 back. The trigger target will change the status to pulse high. If the index is even number, send 0 back. The trigger target will stay as pulse low. */ printf("data %d \n", index); if (index % 2 == 1) { if (!DT2_EiSendResult(index, 1)) { printf("DT2_EiSendResult failed \n"); } } else { if (!DT2_EiSendResult(index, 0)) { printf("DT2_EiSendResult failed \n"); } } }</pre>


```
}
if (!DT2_EiRegisterIndexed(__IndexedHandler))
{
    printf("DT2_EiRegisterIndexed failed \n");
    return 0;
}
```

DT2_EiSendResult

Syntax	BOOLcdecl DT2_EiSendResult(DWORD idx, DWORD value)
Description	Send the decision back to MCU.
Parameter	idx [in]
	The index of the pulse.
	Value [in]
Return	Return TRUE if DT2_EiSendResult succeeded, FALSE if
Value	DT2_EiSendResult failed.
Usage	if (!DT2_EiSendResult(index, 1))
	{
	printf("DT2_EiSendResult failed \n");
	}

Advanced DTIOv2 Example 1 - Trigger Buffer

Description	This example demonstrates that all pulses of the trigger source won't be
	ignored because of the trigger buffer.
Usage	int bufferTriggerDT2()
	{
	/*Reset configuration of each channel.*/
	initialChannel();
	// Trigger LED0 by SI0
	// Enable buffer trigger flag to queue untriggering pulses before
	triggering LED0
	DT2_SETUP aSetup;
	memset(&aSetup, 0, sizeof(aSetup));
	aSetup.modeFlags = DT2_TRIG_BUFF;
	aSetup.trigTgt = DT2_TGT_LED_0;
	aSetup.trigSrc = DT2_SRC_SI_00;
	aSetup.trigMode = DT2_TRIG_RISING;
	aSetup.index = 0;
	aSetup.modeType = DT2_MODE_PTT;
	aSetup.pulseDelay = 100000;
	aSetup.pulseWidth = 20000;
	// Configure parameters of the channel
	if (!DT2_Setup(&aSetup, sizeof(aSetup)))
	{
	printf("DT2 Setup fail \n");
	return 0;
	}
	// Config LED0 as CC mode and set the current as 10 mA
	DWORD pins = (0x00010000) << 0;
	DWORD mode = (pins) LED_MODE_CC;
	if (LED_SetCurrentDriving(mode, 10) == false) {
	printf("Initial LED failed \n");


```
return 0;
}
// Start Deterministic Trigger I/O v2 operation
if (!DT2_Start())
{
     printf("DT2_start failed \n");
     return 0;
}
//Change the status of SI0 from 0 -> 1 and set 1->0 to create pulse
// We produce five times of pulse in this for loop
for (int i = 0; i < 5; ++i)
{
     if (!DT2_StPush(0xFFFFFFF, 0))
     {
           printf("DT2_StPush failed \n");
           return 0;
     }
     Sleep(10);
     if (!DT2_StPush(0xFFFFFFF, 1))
     {
           printf("DT2_StPush failed \n");
           return 0;
     }
     Sleep(1000);
      printf("Software trigger: %d \n", i);
}
Sleep(10000);
// Stop Deterministic Trigger I/O v2 operation
if (!DT2_Stop())
```

```
{
    printf("DT2_Stop failed \n");
    return 0;
}
return 0;
}
```


Advanced DTIOv2 Example 2 - External Input

Description	This example demonstrates the feature of External Input. LED0 is
	triggered by SI0 and "External Input" function is used to control the
	behavior of LED0. If the index is odd, send activate pulse command. If
	the index is even, send deactivate pulse command.
Usage	static voidstdcallIndexedHandler(DWORD index)
U	{
	/* If the index is odd number, send 1 back.
	The trigger target will change the status to pulse high.
	If the index is even number, send 0 back.
	The trigger target will stay as pulse low.
	*/
	printf("data %d \n", index);
	if (index % 2 == 1)
	{
	if (!DT2_EiSendResult(index, 1))
	{
	printf("DT2_EiSendResult failed \n");
	}
	}
	else
	{
	if (!DT2_EiSendResult(index, 0))
	{
	printf("DT2_EiSendResult failed \n");
	}
	}
	}
	int externalInputDT2()
	{
	//Reset configuration of each channel.
	initialChannel();
	// Trigger DO0 by SI0 based on PTT mode


```
// Enable external input
     // User can determine the trigger source status by the message
from computer
     DT2_SETUP aSetup;
     memset(&aSetup, 0, sizeof(aSetup));
     aSetup.modeFlags = DT2_TRIG_EIDD;
     aSetup.trigTgt = DT2_TGT_LED_0;
     aSetup.trigSrc = DT2_SRC_SI_00;
     aSetup.trigMode = DT2_TRIG_RISING;
     aSetup.index = 0;
     aSetup.modeType = DT2_MODE_PTT;
     aSetup.pulseDelay = 50000;
     aSetup.pulseWidth = 20000;
     if (!DT2_Setup(&aSetup, sizeof(aSetup)))
     {
          printf("DT2 Setup fail \n");
          return 0;
     }
     // Config LED0 as CC mode and set the current as 10 mA
     DWORD pins = 0x00010000;
     DWORD mode = (pins) | LED_MODE_CC;
     if (LED_SetCurrentDriving(mode, 10) == false)
     {
          printf("Setting LED failed \n");
          return 0;
     }
     // Register callback function which can determine the status of the
trigger target
     // Our mechanism will give each untriggered pulse a index
     if (!DT2_EiRegisterIndexed(__IndexedHandler))
     {
```

printf("DT2_EiRegisterIndexed failed \n");


```
return 0;
}
// Start Deterministic Trigger I/O v2 operation
if (!DT2_Start())
{
     printf("DT2_Start failed \n");
     return 0;
}
//Change the status of SI0 from 0 -> 1 and set 1->0 to create pulse
// We produce five times of pulse in this for loop
for (int i = 0; i < 5; ++i)
{
     if (!DT2_StPush(0xFFFFFFF, 0))
     {
           printf("DT2_StPush failed \n");
           return 0;
     }
     Sleep(10);
     if (!DT2_StPush(0xFFFFFFF, 1))
     {
           printf("DT2_StPush failed \n");
           return 0;
     }
     Sleep(1000);
     printf("Software trigger: %d \n", i);
}
Sleep(3000);
```



```
// Stop Deterministic Trigger I/O v2 operation
if (!DT2_Stop())
{
    printf("DT2_Stop failed \n");
    return 0;
}
return 0;
```

}

Pulse Width Modulator (PWM)

The Concept of Pulse Width Modulator (PWM)

Pulse Width Modulator can encode analog signal into digital signal by modulating the duty cycle of the square wave. It generates a high resolution square wave to control motor or switch power supply.

We provide Pulse Width Modulator (PWM) API for programming and operating the PWM controller. DTIOv2 contains two PWM generator blocks. Each generator block produces two PWM output signals. Two PWM output signals in the same generator block share the same timer and frequency.

Generator Block	PWM output signals
PWM_GEN_0	PWM_PIN_0
	PWM_PIN_1
PWM_GEN_1	PWM_PIN_2
	PWM_PIN_3

Configuring the Isolated Digital Output as PWM Output

Do4 ~ Do7 can be configured as PWM output (pin 0 ~ 3). We provide flexible methods to switch between Do output and PWM output.

If the pin bits are set by PWM_Start, those outputs are configured as PWM.

If the pin bits are stopped by PWM_Stop, those outputs are configured as Do.

PWM Function Reference

PWM_GenSetup

Syntax	BOOLcdecl PWM_G	GenSetup(DWORD genBits,
	PWM_GEN_SETUP *Ip	Setup, DWORD cbSetup);
Description	PWM clock settings cor	nfiguration.
Parameter	genBits [in]	
	Specifies the generator bl	ock bits of PWM controllers.
	lpSetup [in]	
	A pointer to a PWM_GEN_SETUP structure that contains the PWM	
	generator configuration.	This data structure contains the following
	variables:	
	genMode [in]	
	Value specifies the generator mode of the specified PWM controller.	
	Mode Value	
		PWM_GEN_MODE_DOWN
	Down count Mode	(0x0000000)
	Up/ down count Mode	PWM_GEN_MODE_UP_DOWN
		(0x0000002)
		PWM_GEN_MODE_SYNC
	synchronous updates	(0x0000038)
		PWM_GEN_MODE_NO_SYNC
	Immediate updates	(0x0000000)
		·
	intrTriggers [in]	

intrTriggers [in]

The variable is not available to users at this stage. Please set 0 to disable this variable.

deadBandRise [in]

The variable is not available to users at this stage. Please set 0 to disable this variable.

deadBandFall [in]

The variable is not available to users at this stage. Please set 0 to disable this variable.

	cbSetup [in]
	This variable is to set the length of the structure in bytes. The caller must
	set this member to size of (PWM_GEN_SETUP).
Return	Returns TRUE if procedure successful, FALSE if procedure failed.
Value	
Usage	PWM_GEN_SETUP setup;
	memset(&setup, 0, sizeof(setup));
	setup.genMode = PWM_GEN_MODE_UP_DOWN
	PWM_GEN_MODE_NO_SYNC;
	BOOL returnValue = PWM_GenSetup(PWM_GEN_0, &setup,
	sizeof(setup));

PWM_GenPeriod

BOOLcdecl PWM_GenPeriod(DWORD genBits, DWORD period);	
Set the period of a PWM generator.	
genBits [in]	
Specifies the generator block bits of PWM controllers.	
period [in]	
Specifies the period of PWM generator output, measured in clock ticks.	
Returns TRUE if procedure successful, FALSE if procedure failed.	
BOOL returnValue = PWM_GenPeriod(PWM_GEN_0 PWM_GEN_1,	
800); // 100 KHz	

PWM_PulseWidth

Syntax	BOOLcdecl PWM_PulseWidth(DWORD pinBits, DWORD width);	
Description	Set the pulse width for the specified PWM output.	
Parameter	pinBits [in]	
	Specifies the output bits of PWM controllers.	
	width [in]	
	Specifies the width of the pulse.	
Return	Returns TRUE if procedure successful, FALSE if procedure failed.	
Value		
Usage	BOOL returnValue = PWM_PulseWidth(PWM_PIN_0 PWM_PIN_3,	
	400);	
	1	

PWM_PulseInvert

•	
Syntax	BOOLcdecl PWM_PulseInvert(DWORD pinBits);
Description	Sets inversion mode for PWM outputs.
Parameter	pinBits [in]
	Specify the output bits of PWM to be inverted.
Return	Returns TRUE if procedure successful, FALSE if procedure failed.
Value	
Usage	BOOL returnValue = PWM_PulseInvert(PWM_PIN_0);

PWM_Start

Syntax	BOOLcdecl PWM_Start(DWORD pinBits);
Description	Start PWM controller operation.
Parameter	pinBits [in]
	Specifies the output bits of PWM controllers.
Return	Returns TRUE if procedure successful, FALSE if procedure failed.
Value	
Usage	BOOL returnValue = PWM_Start(PWM_PIN_0 PWM_PIN_1);

PWM_Stop

Syntax	BOOLcdecl PWM_Stop(DWORD pinBits);
Description	Stop PWM controller operation.
Parameter	pinBits [in]
	Specify the output bits of PWM controllers.
Return	Returns TRUE if stop procedure successful, FALSE if stop procedure
Value	failed.
Usage	BOOL returnValue = PWM_Stop(PWM_PIN_0 PWM_PIN_1);

PWM Example

Description	In this PWM example, we utilize PWM functions to provide motor
-	control. To begin, we setup the environment and start up PWM.
	Next, we accelerate the speed of motor by PWM_GenPeriod and
	PWM_PulseWidth function. Lastly, we slow down the motor
	linearly and to an eventual full stop.
Usage	int PWMStart()
	{
	//Configure PWM
	PWM_GEN_SETUP setup;
	memset(&setup, 0, sizeof(setup));
	setup.genMode = PWM_GEN_MODE_DOWN;
	setup.genMode = PWM_GEN_MODE_NO_SYNC;
	if(!PWM_GenSetup(PWM_GEN_0, &setup, sizeof(setup)))
	{
	printf("PWM SETUP fail \n");
	return 0;
	}
	// set the speed of PWM
	if(! PWM_GenPeriod(PWM_GEN_0, 65535)) // 100 KHz
	{
	printf("PWM GenPeriod fail \n");
	return 0;
	}
	//Start PWM
	if (! PWM_Start(PWM_PIN_0))
	{
	printf("PWM start fail \n");
	return 0;
	}
	,
	return 0;
	}


```
int PWMTriangleMode()
{
     for(int i = 0; i < 1 ; ++i)
     {
          // Accelerate the motor by setting PWM
            for(int count=0;count<460; count++)</pre>
            {
                if ( ! PWM_GenPeriod(PWM_GEN_0,
AccProfile[count]) ) // 100 KHz
                {
                     printf("PWM GenPeriod fail \n");
                     return 0;
                }
                if (!
PWM_PulseWidth(PWM_PIN_0,AccProfile[count]>>1 ) )
                {
                     printf("PWM Pulsewidth fail \n");
                     return 0;
                }
                Sleep(5);
            }
            Sleep(10000);
            // Slow down the motor by setting PWM
            for(int count=459;count>0; count--)
            {
                if ( ! PWM_GenPeriod(PWM_GEN_0,
AccProfile[count]) ) // 100 KHz
                {
                     printf("PWM GenPeriod fail \n");
                     return 0;
                }
```



```
if ( !
PWM_PulseWidth(PWM_PIN_0,AccProfile[count]>>1 ) )
                {
                     printf("PWM Pulsewidth fail \n");
                     return 0;
                }
                Sleep(5);
           }
     }
     // Must stop PWM
     if ( ! PWM_Stop(PWM_PIN_0) )
    {
         printf("PWM stop fail \n");
          return 0;
    }
       return 0;
}
int PWMControl()
{
     PWMStart();
     for(int i = 0; i < 1 ; ++i)
          PWMTriangleMode();
     return 0;
}
```


Advanced Examples

Combination PWM and DTIOv2

Description	In this example, we will introduce how to leverage DTIOv2 and PWM	
	control simultaneously.	
Usage	int PositionTriggerWithPWM()	
	{	
	// Start PWM	
	//Must PWM start before QEI initial	
	PWMStart();	
	//Reset configuration of each channel.	
	initialChannel();	
	/*Fill the structure of DT2_SETUP	
	1. Define ppp mode to trigger LED by QEI source	
	2. Define ppp mode to trigger Camera by QEI source	
	*/	
	// Trigger LED when the position is 1000 and the LED will turn on	
	from position 1000 to position 3000.	
	DT2_SETUP aSetup;	
	memset(&aSetup,0,sizeof(aSetup));	
	aSetup.trigTgt = DT2_TGT_LED_0;	
	aSetup.trigSrc = DT2_SRC_QEI_0 ;	
	aSetup.trigMode = DT2_TRIG_RISING;	
	aSetup.index = 0 ;	
	aSetup.modeType = DT2_MODE_PPP;	
	aSetup.trigData = 1000;	
	aSetup.pulseDelay =0;	
	aSetup.pulseWidth =2000;	
	//Trigger camera when the position is 1500.	

```
DT2_SETUP aSetup2;
memset(&aSetup2,0,sizeof(aSetup2));
aSetup2.trigTgt = DT2_TGT_TRIG_00;
aSetup2.trigSrc = DT2_SRC_QEI_0;
aSetup2.trigMode = DT2_TRIG_RISING;
aSetup2.index = 1;
aSetup2.modeType = DT2_MODE_PPP;
aSetup2.trigData = 1500;
aSetup2.pulseDelay =0;
aSetup2.pulseWidth =500;
// Configure parameters of the channel
if ( ! DT2_Setup(&aSetup, sizeof(aSetup)) )
{
      printf("DT2 Setup fail \n");
        return 0;
}
if (!DT2_Setup(&aSetup2, sizeof(aSetup2)))
{
      printf("DT2 Setup fail \n");
        return 0;
}
//Set configuration of LED0
DWORD pins = (0x00010000) << 0;
//Set LED Mode as constant current
 DWORD mode = (pins) | LED_MODE_CC;
// Set constant current as 100 mA. It means that LED is turned on.
if (LED_SetCurrentDriving(mode, 100) == false)
{
      printf("Setting LED failed \n");
      return 0;
}
```



```
// Initial QEI configuration
     QEIEncoderInit();
     // Start Determinstic Trigger I/O v2 operation
     if(!DT2_Start())
     {
           printf("Starting DT2 failed \n");
           return 0;
     }
     // Start the PWM slowly and then acceralate to the hightest velocity
we set. Keep the speed for
                                 a while, and then slow down.
     PWMTriangleMode();
     // Stop DTIOv2
     // Must stop before next start. If not, it will cause some errors.
      if (! DT2_Stop())
    {
           printf("Stopping DT2 failed \n");
           return 0;
    }
```

}